
src Documentation
Release 3.4.2

Author

July 31, 2018

Contents

1 About Globo NetworkAPI 3
1.1 Description . 3
1.2 Features . 3
1.3 Architecture . 4
1.4 Related Projects . 4

2 Pre-provisioned Server 7
2.1 Requirements . 7
2.2 Setting up the VM . 7

3 Installing Globo NetworkAPI 9
3.1 Using pre-configured VM . 9
3.2 Installing from scratch . 9
3.3 Create a specific User/Group . 9
3.4 Download Code . 9
3.5 Create a VirtualEnv . 10
3.6 Install Dependencies . 10
3.7 Install Memcached . 10
3.8 MySQL Server Configuration . 11
3.9 HTTP Server Configuration . 11
3.10 Test installation . 11
3.11 LDAP Server Configuration . 12
3.12 Integrate with Queue . 12
3.13 Working with Documentation . 13
3.14 Front End . 14

4 Definitions 15
4.1 Access . 15
4.2 Administrative Permission . 15
4.3 Brand . 16
4.4 Environment . 16
4.5 Equipment . 16
4.6 Equipment Group . 16
4.7 Equipment Type . 18
4.8 Filter . 18
4.9 IP (IPv4/IPv6) . 18
4.10 Interface . 18
4.11 Model . 19

i

4.12 Network . 19
4.13 Network Type . 19
4.14 Plugin (Roteiro) . 19
4.15 Scripts . 19
4.16 Template (ACL) . 20
4.17 User . 20
4.18 User Group . 20
4.19 Vlan . 20

5 FAQ 21

6 Globo NetworkAPI API Docs 23
6.1 networkapi package . 23

7 Using GloboNetworkAPI V3 57
7.1 Improve GET requests through some extra parameters . 57
7.2 Datacenter module . 59
7.3 Environment module . 68
7.4 Environment Vip module . 72
7.5 Equipment module . 77
7.6 Option Pool module . 84
7.7 Option Vip module . 84
7.8 Server Pool module . 87
7.9 Type Option module . 103
7.10 Vip Request module . 104
7.11 Vlan module . 122
7.12 NetworkIPv4 module . 131
7.13 NetworkIPv6 module . 143
7.14 IPv4 module . 155
7.15 IPv6 module . 164
7.16 Object Group Permissions module . 174
7.17 General Object Group Permissions module . 180
7.18 Object Type module . 186
7.19 Vrf module . 188
7.20 Task module . 193

8 Using GloboNetworkAPI V4 195
8.1 As module . 195
8.2 Equipment module . 201
8.3 IPv4 module . 211
8.4 IPv6 module . 222
8.5 Neighbor module . 234
8.6 Virtual Interface module . 241
8.7 Software Defined Networks . 250

9 E-mail lists (Forums) 251

10 Indices and tables 253

Python Module Index 255

ii

src Documentation, Release 3.4.2

Contents:

Contents 1

src Documentation, Release 3.4.2

2 Contents

CHAPTER 1

About Globo NetworkAPI

Description

Globo NetworkAPI is a REST API that manages IP networking resources. It is supposed to be not just an IPAM,
but a centralized point of network control, allowing documentation from physical and logical network and starting
configuration requests to equipments.

Globo NetworkAPI is made to support a Web User Interface features, exposing its funcionality to be used with any
other client.

This web tool helps network administrator manage and automate networking resources (routers, switches and load
balancers) and document logical and physical networking.

They were created to be vendor agnostic and to support different orquestrators and environments without loosing the
centralized view of all network resources allocated.

It was not created to be and inventory database, so it does not have CMDB functionalities.

You can find documentation for the Web UI in this link.

Features

• LDAP authentication

• Supports cabling documentation (including patch-panels/DIO’s)

• Separated Layer 2 and Layer 3 documentation (vlan/network)

• IPv4 and IPv6 support

• Automatic allocation of Vlans, Networks and IP’s

• ACL (access control list) automation (documentation/versioning/applying)

• Load-Balancer support

• Automated deploy of allocated resources on switches, routers and load balancers

• Load balancers management

• Expandable plugins for automating configuration

3

http://globonetworkapi-webui.readthedocs.org

src Documentation, Release 3.4.2

Architecture

Related Projects

Globo NetworkAPI WebUI.

4 Chapter 1. About Globo NetworkAPI

https://github.com/globocom/GloboNetworkAPI-WebUI

src Documentation, Release 3.4.2

Globo NetworkAPI Python Client.

Globo NetworkAPI Python Java.

1.4. Related Projects 5

https://github.com/globocom/GloboNetworkAPI-client-python
https://github.com/globocom/GloboNetworkAPI-client-java

src Documentation, Release 3.4.2

6 Chapter 1. About Globo NetworkAPI

CHAPTER 2

Pre-provisioned Server

The pre provisioned Globo NetworkAPI server uses Vagrant with a Hashicorp Ubuntu 32 bit server.

You can test it locally using this server. We don’t recommend running this server in a production environment.

Root password for MySQL database is “password”.

GloboNetworkAPI admin user password is “default”.

By default, the server will use IP 10.0.0.2/24 in a local network. If this settings conflict with you network environment,
you can modify it in the “Vagrantfile”, in root directory.

Requirements

• [VirtualBox](https://www.virtualbox.org/wiki/Downloads)

• [Vagrant](http://www.vagrantup.com/downloads.html) with vagrant Omnibus plugin

‘bash vagrant plugin install vagrant-omnibus) ‘ - [Git](http://git-scm.com/downloads)

Setting up the VM

Execute the following commands:

‘bash $ git clone https://github.com/globocom/GloboNetworkAPI $ cd
GloboNetworkAPI $ vagrant up ‘

The GloboNetworkAPI will be available locally at http://10.0.0.2:8000

The gunicorn logs are at /tmp/gunicorn-*

The Django logs are at /tmp/networkapi.log

7

https://www.virtualbox.org/wiki/Downloads
http://www.vagrantup.com/downloads.html
http://git-scm.com/downloads
http://10.0.0.2:8000

src Documentation, Release 3.4.2

8 Chapter 2. Pre-provisioned Server

CHAPTER 3

Installing Globo NetworkAPI

Using pre-configured VM

In order to use the pre-configured VM you need to have vagrant <https://www.vagrantup.com/downloads.html> and
VirtualBox <https://www.virtualbox.org/wiki/Downloads> installed in your machine.

After that, go to the directory you want to install and do:

git clone https://github.com/globocom/GloboNetworkAPI
cd GloboNetworkAPI
git submodule update --init --recursive
vagrant plugin install vagrant-omnibus
vagrant up

After this you’ll have the GloboNetworkAPI running on http://10.0.0.2:8000/

Installing from scratch

Following examples were based on CentOS 7.0.1406 installation.

All root passwords were configured to “default”.

All

Create a specific User/Group

useradd -m -U networkapi
passwd networkapi
visudo

networkapi ALL=(ALL) ALL

sudo mkdir /opt/app/
sudo chmod 777 /opt/app/

Download Code

Download Globo NetworkAPI code from Globocom GitHub.

9

http://10.0.0.2:8000/
https://github.com/globocom/GloboNetworkAPI

src Documentation, Release 3.4.2

In this example we are downloading code to /opt/app:

sudo yum install git
cd /opt/app/
git clone https://github.com/globocom/GloboNetworkAPI

We are exporting this variable below to better document the install process:

export NETWORKAPI_FOLDER=/opt/app/GloboNetworkAPI/
echo "export NETWORKAPI_FOLDER=/opt/app/GloboNetworkAPI/" >> ~/.bashrc

Create a VirtualEnv

sudo yum install python-virtualenv
sudo easy_install pip
virtualenv ~/virtualenvs/networkapi_env
source ~/virtualenvs/networkapi_env/bin/activate
echo "source ~/virtualenvs/networkapi_env/bin/activate" >> ~/.bashrc

Install Dependencies

You will need the following packages in order to install the next python packages via pip:

sudo yum install mysql
sudo yum install mysql-devel
sudo yum install gcc

Install the packages listed on $NETWORKAPI_FOLDER/requirements.txt file:

pip install -r $NETWORKAPI_FOLDER/requirements.txt

Create a sitecustomize.py inside your /path/to/lib/python2.X folder with the following content:

import sys
sys.setdefaultencoding(’utf-8’)

echo -e "import sys\nsys.setdefaultencoding(’utf-8’)\n" > ~/virtualenvs/networkapi_env/lib/python2.7/sitecustomize.py

Install Memcached

You can run memcached locally or you can set file variable CACHE_BACKEND to use a remote memcached farm in
file $NETWORKAPI_FOLDER/networkapi/environment_settings.py.

In case you need to run locally:

sudo yum install memcached
sudo systemctl start memcached
sudo systemctl enable memcached

10 Chapter 3. Installing Globo NetworkAPI

src Documentation, Release 3.4.2

MySQL Server Configuration

For details on MySQL installation, check MySQL Documentation.

sudo yum install mariadb-server mariadb
sudo systemctl start mariadb.service
sudo systemctl enable mariadb.service
sudo /usr/bin/mysql_secure_installation

Test installation and create a telecom database:

mysql -u root -p<password>
CREATE user ’telecom’ IDENTIFIED BY ’<password>’;
GRANT ALL ON *.* TO ’telecom’@’%’;
FLUSH PRIVILEGES;

Create the necessary tables:

mysql -u <user> -p <password> -h <host> <dbname> < $NETWORKAPI_FOLDER/dev/database_configuration.sql

If you want to load into your database the environment used for documentation examples:

mysql -u <user> -p <password> -h <host> <dbname> < $NETWORKAPI_FOLDER/dev/load_example_environment.sql

Configure the Globo NetworkAPI code to use your MySQL instance:

File $NETWORKAPI_FOLDER/networkapi/environment_settings.py:

DATABASE_ENGINE = ’mysql’
DATABASE_NAME = ’your_db_name’
DATABASE_USER = ’your_db_user’
DATABASE_PASSWORD = ’your_db_password’
DATABASE_HOST = ’your_db_user_host’
DATABASE_PORT = ’3306’
DATABASE_OPTIONS = {"init_command": "SET storage_engine=INNODB"}

HTTP Server Configuration

For a better performance, install Green Unicorn to run Globo NetworkAPI.

pip install gunicorn

There is no need to install a nginx or apache to proxy pass the requests, once there is no static files in the API.

Edit $NETWORKAPI_FOLDER/gunicorn.conf.py to use your log files location and user preferentes and run
gunicorn:

cd $NETWORKAPI_FOLDER
gunicorn networkapi_wsgi:application

Test installation

Try to access the root location of the API:

3.8. MySQL Server Configuration 11

http://dev.mysql.com/doc/refman/5.1/en/installing.html
http://gunicorn-docs.readthedocs.org/en/latest/settings.html#config-file

src Documentation, Release 3.4.2

http://your_location:8000/

This should take you a to 404 page listing available url’s.

LDAP Server Configuration

If you want to use LDAP authentication, configure the following variables in FILE:

!TODO

Integrate with Queue

Install Dependencies:

Apache ActiveMQ

Apache ActiveMQ ™ is the most popular and powerful open source messaging and Integration Patterns server. Apache
ActiveMQ Getting Started.

Example configuration on settings.py:

BROKER_DESTINATION = "/topic/queue_name"
BROKER_URI = "failover:(tcp://localhost:61613,tcp://server2:61613)?randomize=false"

Usage:

from queue_tools import queue_keys
from queue_tools.queue_manager import QueueManager

Create new queue manager
queue_manager = QueueManager()

Dict is the message body
obj_to_queue = {
"id_vlan": <vlan_id>,
"num_vlan": <num_vlan>,
"id_environment": <environment_id>,
"networks_ipv4": [
{
"id": <id>,
"ip_formated": "<oct1>.<oct2>.<oct3>.<oct4>/<block>"
}

],
"networks_ipv6": [
{
"id": <id>,
"ip_formated": "<oct1>.<oct2>.<oct3>.<oct4>.<oct5>.<oct6>.<oct7>.<oct8>/<block>"

}
],
"description": queue_keys.VLAN_REMOVE,

}

Add in memory temporary on queue to sent
queue_manager.append(obj_to_queue)

12 Chapter 3. Installing Globo NetworkAPI

http://activemq.apache.org/getting-started.html
http://activemq.apache.org/getting-started.html

src Documentation, Release 3.4.2

sent to consumer
queue_manager.send()

Output:

$VAR1 = {
’id_vlan’ => <id>,
"num_vlan" => <num_vlan>,
"id_environment" => <environment_id>,
"networks_ipv4" => [
{
"id" => <id>,
"ip_formated" => "<oct1>.<oct2>.<oct3>.<oct4>/<block>"
}

],
"networks_ipv6" => [
{
"id" => <id>,
"ip_formated" => "<oct1>.<oct2>.<oct3>.<oct4>.<oct5>.<oct6>.<oct7>.<oct8>/<block>"

}
],
’description’ => ’remove’

};

Features that use the QueueManager.py:

Vlan remove()
uri: vlan/<id_vlan>/remove/

Vlan create_ipv4()
uri: vlan/v4/create/

Vlan create_ipv6()
uri: vlan/v6/create/

Vlan create_acl()
uri: vlan/create/acl/

Vlan create_script_acl()
uri: vlan/create/script/acl/

Vlan create_vlan()
uri: vlan/create/

Vlan criar()
uri: vlan/<id_vlan>/criar/

Working with Documentation

If you want to generate documentation, you need the following python modules installed:

pip install sphinx==1.2.2
pip install sphinx-rtd-theme==0.1.6
pip install pytest==2.2.4

3.13. Working with Documentation 13

src Documentation, Release 3.4.2

Front End

If you want o have a Front End user application to use with Globo NetworkAPI you can install GloboNetworkAPI
WebUI.

14 Chapter 3. Installing Globo NetworkAPI

http://globonetworkapi-webui.readthedocs.org/
http://globonetworkapi-webui.readthedocs.org/

CHAPTER 4

Definitions

Contents

• Definitions
– Access
– Administrative Permission
– Brand
– Environment
– Equipment
– Equipment Group
– Equipment Type
– Filter
– IP (IPv4/IPv6)
– Interface
– Model
– Network
– Network Type
– Plugin (Roteiro)
– Scripts
– Template (ACL)
– User
– User Group
– Vlan

Access

Access is used to configure the protocol and username/password used for accessing Equipment. Plugins can use these
informations in order to get credencials for listing and configuring Equipment.

You can insert many different protocols for each Equipment, like telnet, ssh, snmp etc.

Administrative Permission

Security functions that are used to allow administrative system functions or equipment configuration functions. These
permissions are configured per User Group.

15

src Documentation, Release 3.4.2

Notice that in order to do equipment configuration functions, the User Group has to have the respective administrative
permission AND permissions on the Equipment Group.

Brand

Used for categorizing the equipments of a specific vender/brand name.

Environment

The environment defines a logical part of the infrastructure, usually a broadcast domain. It can be divided in 3 parts:
“Divisao_DC”, “Ambiente Logico” and “Grupo Layer3”. It is expected to have all vlans in a environment routed in
the same gateway/router.

I.e. In the picture below, you can see 5 different envinronments, represented by different colors:

• The Red has vlan range from 11 to 20 and Equipment R1, R2, R3 and SR1.

• The Blue has vlan range from 21 to 30 and Equipment B1, B2, B3 and SR1.

• The Green has vlan 31 and Equipment SR1 and Router.

• The Yellow has vlan 20 and Equipment SR2 and Router.

• The Orange has vlan ranges from 15 to 19 and from 21 to 40, and Equipment O1, O2 and O3 and SR2.

Notice that, as you have a common equipment SR1 in 3 environments Red, Green and Blue, you cannot have vlan
numbers that overlaps in them. The same applies to Yellow and Orange environments.

As Orange and {Red, Green an Blue} have no equipments in common, they can have vlans that shares the same
numbers.

This is automatically considered by Globo NetworkAPI when you configure your environments and their Equipment.

You can also have a server like S1 that needs to connect to more than environment. In this cases, you have to configure
a Filter for those environments.

Equipment

Equipment represents any object in the infrasctructure that has to be documented. Routers, switches, patch panels,
servers, load balancers, virtual servers etc. Equipments have a type, a “brand” and a “model” in order to categorize it.
They can also be arranged in Equipment Group.

Equipments can have IP (IPv4/IPv6) and Interface and can be associated with an Environment.

In example topology above, server S1 has IPs 172.16.0.5 and 10.0.0.5 and is part of 2 environments, Blue and Orange.
Switch B1 does not have any IP address, but it is part of Blue environment. SR1 may have hundreds of IPs and it is
part of 3 environments.

Equipment Group

Equipment Group is used for access restrictions on Equipment.

In order to be able to read/write configurations for an Equipment, a User has to be in a User Group that has the
necessary permissions in at least one Equipment Group that the specific Equipment is part of.

16 Chapter 4. Definitions

src Documentation, Release 3.4.2

Figure 4.1: example topology

4.6. Equipment Group 17

src Documentation, Release 3.4.2

So, in order to be managed, an Equipment has to be part of at least one Equipment Group.

Equipment Type

This is field for categorizing the Equipment. It is also used in Filter.

Filter

Filters are used to permit an Equipment of a specific Equipment Type to be part of more than one Environment that has
overlapping vlans and/or networks.

In the example topology above, server S1 should be part of two environments that have overlapping vlan numbers.
In this case, there should have a filter that has the server S1 Equipment Type applied in both environments, Blue and
Orange. It is recommended not to create filters with switches or routers.

IP (IPv4/IPv6)

Represents the IPs allocated for every Equipment in a specific Network. You can allocate the same IP to more than
one Equipment in the same network (clusters, gateway redundancy protocols etc). There is no limit on the number of
IPs an Equipment can have (if available in Network).

The allocated IPs are used for documentation pourposes and for automatic allocating of newly unused IPs.

Interface

Represents the physical interfaces that Equipment may have and the connections between them.

• You can represent patch panels in 2 ways. Generic patch panel or mirrored patch panel. When 2 patch panels
are connected by their back connections in a organized way (the same interface numbers are correlated), you
can represent them as a single Equipment, a mirrored patch panel. In other cases, you can represent each panel
as a separated Equipment, like a generic patch panel.

• Patch panels has for each interface, 2 connections. The “Front” and “Back” connection. You can define each
side as you want.

• Only patch panels have “Back” connections. All other equipments should have only “Front” connections.

Figure below show some examples of physical interfaces:

Figure 4.2: example interfaces

Figure 4.3: example connections with a mirrored patch panel

Figure 4.4: example connections with generic patch panels

Some equipments may have a front and back connection (i.e. patch panel) and some equipments only have 1 possible
connection (ie network interface card on servers, switch interfaces etc).

18 Chapter 4. Definitions

src Documentation, Release 3.4.2

Interfaces are used for documentation pourposes and to locate a switch port that a specific server is configured when
you want to change that server inteface configuration on switch side. Interfaces that should not be configured in any
case by the system should be configured with “protected” flag.

Model

Each Brand can have several models. The models are used for documenting purposes.

Network

Represent the layer 3, IPv4 or IPv6 address range.

As it is a different layer, althought not recommended by IP networking best practices, you can have multiple IPv4/IPv6
networks in the same Vlan.

As Vlan and Environment, you cannot have two overlapping networks (same length or subnets/supernets) in the same
environment. The equipments should not be able to treat that, but you can have those in different environments.
I.E. in picture example topology you cannot have overlapping networks 172.16.0.0/24 and 172.16.0.128/25 in Blue,
Red or Green environment at the same time, because the same switch router supports all Layer3, but you can have
172.16.0.0/24 on Blue and 172.16.0.128/25 on Orange environment for example.

Network Type

Used for documentating purposes only. You can for example tell that Network of a specific type are used for point-to-
point links, or for internal usage only, networks for NAT only etc.

Plugin (Roteiro)

The files used by the Scripts for performing a task on specific Equipment. Each plugin have a type to be categorized.
You can write your scripts and how they look for your plugins, but is recommended that the plugin name be the file
name used.

The plugin type is used for calling the correct Scripts in order to do that type of configuration.

Scripts

You can create scripts for doing anything in your environment. We recommend making them for a generic feature, and
call a Plugin (Roteiro) from them to make equipment/brand specific syntax commands.

You associate a script with a specific Plugin (Roteiro) type and associate the Plugin (Roteiro) of that type to the
Equipment. This way you can perform several tasks on different Equipment brands/models with the same plugin.

4.11. Model 19

src Documentation, Release 3.4.2

Template (ACL)

When you configure an Environment, you can define a base model for the access lists (ACL) for every interface vlan
(SVI) that you create there. This model is the template. It is a text file with keywords that are replaced with the
network/Ips created for those networks.

You can define a template for IPv4 and another for IPv6 Network for each Environment.

User

An account for a client to authenticate. You can use a locally stored password or configure to use LDAP authentication.

User Group

User groups used for access restriction. All permissions are based on user groups. There is no way to give a permission
directly to a User.

Vlan

Represent the layer 2 Vlans on equipments. See Environment for restrictions on vlan numbering.

20 Chapter 4. Definitions

CHAPTER 5

FAQ

Is empty now.

21

src Documentation, Release 3.4.2

22 Chapter 5. FAQ

CHAPTER 6

Globo NetworkAPI API Docs

networkapi package

Subpackages

networkapi.acl package

Submodules

networkapi.acl.Enum module

networkapi.acl.acl module

networkapi.acl.file module

Module contents

networkapi.ambiente package

Subpackages

networkapi.ambiente.resource package

Submodules

networkapi.ambiente.resource.AmbienteResource module

networkapi.ambiente.resource.DivisionDcAddResource module

networkapi.ambiente.resource.DivisionDcAlterRemoveResource module

networkapi.ambiente.resource.DivisionDcGetAllResource module

23

src Documentation, Release 3.4.2

networkapi.ambiente.resource.EnvironmentBlocks module

networkapi.ambiente.resource.EnvironmentConfigurationAddResource module

networkapi.ambiente.resource.EnvironmentConfigurationListResource module

networkapi.ambiente.resource.EnvironmentConfigurationRemoveResource module

networkapi.ambiente.resource.EnvironmentGetAclPathsResource module

networkapi.ambiente.resource.EnvironmentGetByEquipResource module

networkapi.ambiente.resource.EnvironmentGetByIdResource module

networkapi.ambiente.resource.EnvironmentIpConfigResource module

networkapi.ambiente.resource.EnvironmentListResource module

networkapi.ambiente.resource.EnvironmentSetTemplateResource module

networkapi.ambiente.resource.EnvironmentVipGetAmbienteP44TxtResource module

networkapi.ambiente.resource.EnvironmentVipGetClienteTxtResource module

networkapi.ambiente.resource.EnvironmentVipGetFinalityResource module

networkapi.ambiente.resource.EnvironmentVipResource module

networkapi.ambiente.resource.EnvironmentVipSearchResource module

networkapi.ambiente.resource.GroupL3AddResource module

networkapi.ambiente.resource.GroupL3AlterRemoveResource module

networkapi.ambiente.resource.GroupL3GetAllResource module

networkapi.ambiente.resource.LogicalEnvironmentAddResource module

networkapi.ambiente.resource.LogicalEnvironmentAlterRemoveResource module

networkapi.ambiente.resource.LogicalEnvironmentGetAllResource module

24 Chapter 6. Globo NetworkAPI API Docs

src Documentation, Release 3.4.2

networkapi.ambiente.resource.RequestAllVipsEnviromentVipResource module

Module contents

networkapi.ambiente.response package

Module contents

networkapi.ambiente.test package

Submodules

networkapi.ambiente.test.test_DivisionDc module

networkapi.ambiente.test.test_Environment module

networkapi.ambiente.test.test_EnvironmentVIP module

networkapi.ambiente.test.test_GroupL3 module

networkapi.ambiente.test.test_LogicalEnvironment module

Module contents

Submodules

networkapi.ambiente.models module

Module contents

networkapi.auth package

Module contents

networkapi.blockrules package

Subpackages

networkapi.blockrules.resource package

Submodules

networkapi.blockrules.resource.RuleGetResource module

6.1. networkapi package 25

src Documentation, Release 3.4.2

networkapi.blockrules.resource.RuleResource module

Module contents

networkapi.blockrules.test package

Submodules

networkapi.blockrules.test.test_Block module

networkapi.blockrules.test.test_Rule module

Module contents

Submodules

networkapi.blockrules.models module

Module contents

networkapi.check package

Submodules

networkapi.check.CheckAction module

class networkapi.check.CheckAction.CheckAction
Bases: object

check(request)

Module contents

networkapi.config package

Submodules

networkapi.config.models module

Module contents

networkapi.distributedlock package

Submodules

26 Chapter 6. Globo NetworkAPI API Docs

src Documentation, Release 3.4.2

networkapi.distributedlock.memcachedlock module

Module contents

networkapi.equipamento package

Subpackages

networkapi.equipamento.resource package

Submodules

networkapi.equipamento.resource.BrandAddResource module

networkapi.equipamento.resource.BrandAlterRemoveResource module

networkapi.equipamento.resource.BrandGetAllResource module

networkapi.equipamento.resource.EquipAccessEditResource module

networkapi.equipamento.resource.EquipAccessGetResource module

networkapi.equipamento.resource.EquipAccessListResource module

networkapi.equipamento.resource.EquipScriptListResource module

networkapi.equipamento.resource.EquipamentoAcessoResource module

networkapi.equipamento.resource.EquipamentoEditResource module

networkapi.equipamento.resource.EquipamentoGrupoResource module

networkapi.equipamento.resource.EquipamentoResource module

networkapi.equipamento.resource.EquipmentEnvironmentDeallocateResource module

networkapi.equipamento.resource.EquipmentFindResource module

networkapi.equipamento.resource.EquipmentGetAllResource module

networkapi.equipamento.resource.EquipmentGetByGroupEquipmentResource module

6.1. networkapi package 27

src Documentation, Release 3.4.2

networkapi.equipamento.resource.EquipmentGetRealRelated module

networkapi.equipamento.resource.EquipmentListResource module

networkapi.equipamento.resource.EquipmentScriptAddResource module

networkapi.equipamento.resource.EquipmentScriptGetAllResource module

networkapi.equipamento.resource.EquipmentScriptRemoveResource module

networkapi.equipamento.resource.EquipmentTypeAddResource module

networkapi.equipamento.resource.EquipmentTypeGetAllResource module

networkapi.equipamento.resource.ModelAddResource module

networkapi.equipamento.resource.ModelAlterRemoveResource module

networkapi.equipamento.resource.ModelGetAllResource module

networkapi.equipamento.resource.ModelGetByBrandResource module

Module contents

networkapi.equipamento.response package

Module contents

networkapi.equipamento.test package

Submodules

networkapi.equipamento.test.test_Brand module

networkapi.equipamento.test.test_Equipment module

networkapi.equipamento.test.test_EquipmentAccess module

networkapi.equipamento.test.test_EquipmentEnvironment module

networkapi.equipamento.test.test_EquipmentScript module

28 Chapter 6. Globo NetworkAPI API Docs

src Documentation, Release 3.4.2

networkapi.equipamento.test.test_EquipmentType module

networkapi.equipamento.test.test_Model module

Module contents

Submodules

networkapi.equipamento.models module

Module contents

networkapi.eventlog package

Subpackages

networkapi.eventlog.resource package

Submodules

networkapi.eventlog.resource.EventLogChoiceResource module

networkapi.eventlog.resource.EventLogFindResource module

Module contents

Submodules

networkapi.eventlog.models module

Module contents

networkapi.filter package

Subpackages

networkapi.filter.resource package

Submodules

networkapi.filter.resource.FilterAddResource module

networkapi.filter.resource.FilterAlterRemoveResource module

6.1. networkapi package 29

src Documentation, Release 3.4.2

networkapi.filter.resource.FilterAssociateResource module

networkapi.filter.resource.FilterDissociateOneResource module

networkapi.filter.resource.FilterGetByIdResource module

networkapi.filter.resource.FilterListAllResource module

Module contents

networkapi.filter.test package

Submodules

networkapi.filter.test.test_Filter module

Module contents

Submodules

networkapi.filter.models module

Module contents

networkapi.filterequiptype package

Submodules

networkapi.filterequiptype.models module

Module contents

networkapi.grupo package

Subpackages

networkapi.grupo.resource package

Submodules

networkapi.grupo.resource.AdministrativePermissionAddResource module

networkapi.grupo.resource.AdministrativePermissionAlterRemoveResource module

30 Chapter 6. Globo NetworkAPI API Docs

src Documentation, Release 3.4.2

networkapi.grupo.resource.AdministrativePermissionByGroupUserResource module

networkapi.grupo.resource.AdministrativePermissionGetAllResource module

networkapi.grupo.resource.AdministrativePermissionGetByIdResource module

networkapi.grupo.resource.GroupEquipmentResource module

networkapi.grupo.resource.GroupUserAddResource module

networkapi.grupo.resource.GroupUserAlterRemoveResource module

networkapi.grupo.resource.GroupUserGetAllResource module

networkapi.grupo.resource.GroupUserGetByIdResource module

networkapi.grupo.resource.GrupoEquipamentoAssociaEquipamentoResource module

networkapi.grupo.resource.GrupoEquipamentoGetByEquipResource module

networkapi.grupo.resource.GrupoEquipamentoRemoveAssociationEquipResource module

networkapi.grupo.resource.GrupoResource module

networkapi.grupo.resource.PermissionGetAllResource module

Module contents

networkapi.grupo.test package

Submodules

networkapi.grupo.test.test_EquipmentGroup module

networkapi.grupo.test.test_EquipmentGroupRights module

networkapi.grupo.test.test_GroupUser module

networkapi.grupo.test.test_Permission module

networkapi.grupo.test.test_PermissionAdministrative module

6.1. networkapi package 31

src Documentation, Release 3.4.2

Module contents

Submodules

networkapi.grupo.models module

Module contents

networkapi.grupovirtual package

Subpackages

networkapi.grupovirtual.resource package

Submodules

networkapi.grupovirtual.resource.GrupoVirtualResource module

Module contents

Module contents

networkapi.healthcheckexpect package

Subpackages

networkapi.healthcheckexpect.resource package

Submodules

networkapi.healthcheckexpect.resource.HealthcheckAddExpectStringResource module

networkapi.healthcheckexpect.resource.HealthcheckAddResource module

networkapi.healthcheckexpect.resource.HealthcheckExpectDistinctResource module

networkapi.healthcheckexpect.resource.HealthcheckExpectGetResource module

networkapi.healthcheckexpect.resource.HealthcheckExpectResource module

Module contents

networkapi.healthcheckexpect.test package

32 Chapter 6. Globo NetworkAPI API Docs

src Documentation, Release 3.4.2

Submodules

networkapi.healthcheckexpect.test.test_HealthcheckExpect module

Module contents

Submodules

networkapi.healthcheckexpect.models module

Module contents

networkapi.infrastructure package

Submodules

networkapi.infrastructure.datatable module

networkapi.infrastructure.ip_subnet_utils module

networkapi.infrastructure.ip_subnet_utils.get_prefix_IPV4(num_hosts)

networkapi.infrastructure.ip_subnet_utils.get_prefix_IPV6(num_hosts)

networkapi.infrastructure.ip_subnet_utils.is_subnetwork(network_address_01, net-
work_address_02)

Verifica se o endereço network_address_01 é sub-rede do endereço network_address_02.

@param network_address_01: Uma tuple com os octetos do endereço, formato: (oct1, oct2, oct3, oct5) @param
network_address_02: Uma tuple com os octetos do endereço e o bloco, formato: (oct1, oct2, oct3, oct5, bloco)

@return: True se network_address_01 é sub-rede de network_address_02. False caso contrário.

networkapi.infrastructure.ip_subnet_utils.is_valid_ip(address)
Verifica se address é um endereço ip válido.

networkapi.infrastructure.ip_subnet_utils.network_mask_from_cidr_mask(cidr_mask)
Calcula a máscara de uma rede a partir do número do bloco do endereço.

@param cidr_mask: Valor do bloco do endereço.

@return: Tuple com o octeto 1, 2, 3, 4 da máscara: (oct1,oct2,oct3,oct4).

networkapi.infrastructure.ipaddr module

A fast, lightweight IPv4/IPv6 manipulation library in Python.

This library is used to create/poke/manipulate IPv4 and IPv6 addresses and networks.

exception networkapi.infrastructure.ipaddr.AddressValueError
Bases: exceptions.ValueError

A Value Error related to the address.

networkapi.infrastructure.ipaddr.CollapseAddrList(addresses)
Collapse a list of IP objects.

6.1. networkapi package 33

src Documentation, Release 3.4.2

Example:

collapse_address_list([IPv4(‘1.1.0.0/24’), IPv4(‘1.1.1.0/24’)]) -> [IPv4(‘1.1.0.0/23’)]

Args: addresses: A list of IPv4Network or IPv6Network objects.

Returns: A list of IPv4Network or IPv6Network objects depending on what we were passed.

Raises: TypeError: If passed a list of mixed version objects.

networkapi.infrastructure.ipaddr.IPAddress(address, version=None)
Take an IP string/int and return an object of the correct type.

Args:

address: A string or integer, the IP address. Either IPv4 or IPv6 addresses may be supplied; integers
less than 2**32 will be considered to be IPv4 by default.

version: An Integer, 4 or 6. If set, don’t try to automatically determine what the IP address type is.
important for things like IPAddress(1), which could be IPv4, ‘0.0.0.1’, or IPv6, ‘::1’.

Returns: An IPv4Address or IPv6Address object.

Raises:

ValueError: if the string passed isn’t either a v4 or a v6 address.

networkapi.infrastructure.ipaddr.IPNetwork(address, version=None, strict=False)
Take an IP string/int and return an object of the correct type.

Args:

address: A string or integer, the IP address. Either IPv4 or IPv6 addresses may be supplied; integers
less than 2**32 will be considered to be IPv4 by default.

version: An Integer, if set, don’t try to automatically determine what the IP address type is. important
for things like IPNetwork(1), which could be IPv4, ‘0.0.0.1/32’, or IPv6, ‘::1/128’.

Returns: An IPv4Network or IPv6Network object.

Raises:

ValueError: if the string passed isn’t either a v4 or a v6 address. Or if a strict network was requested
and a strict network wasn’t given.

class networkapi.infrastructure.ipaddr.IPv4Address(address)
Bases: networkapi.infrastructure.ipaddr._BaseV4, networkapi.infrastructure.ipaddr._BaseIP

Represent and manipulate single IPv4 Addresses.

class networkapi.infrastructure.ipaddr.IPv4Network(address, strict=False)
Bases: networkapi.infrastructure.ipaddr._BaseV4, networkapi.infrastructure.ipaddr._BaseNet

This class represents and manipulates 32-bit IPv4 networks.

Attributes: [examples for IPv4Network(‘1.2.3.4/27’)] ._ip: 16909060 .ip: IPv4Address(‘1.2.3.4’) .network:
IPv4Address(‘1.2.3.0’) .hostmask: IPv4Address(‘0.0.0.31’) .broadcast: IPv4Address(‘1.2.3.31’) .net-
mask: IPv4Address(‘255.255.255.224’) .prefixlen: 27

IsLinkLocal()

IsLoopback()

IsMulticast()

IsRFC1918()

34 Chapter 6. Globo NetworkAPI API Docs

src Documentation, Release 3.4.2

class networkapi.infrastructure.ipaddr.IPv6Address(address)
Bases: networkapi.infrastructure.ipaddr._BaseV6, networkapi.infrastructure.ipaddr._BaseIP

Represent and manipulate single IPv6 Addresses.

class networkapi.infrastructure.ipaddr.IPv6Network(address, strict=False)
Bases: networkapi.infrastructure.ipaddr._BaseV6, networkapi.infrastructure.ipaddr._BaseNet

This class represents and manipulates 128-bit IPv6 networks.

Attributes: [examples for IPv6(‘2001:658:22A:CAFE:200::1/64’)] .ip: IPv6Address(‘2001:658:22a:cafe:200::1’)
.network: IPv6Address(‘2001:658:22a:cafe::’) .hostmask: IPv6Address(‘::ffff:ffff:ffff:ffff’) .broadcast:
IPv6Address(‘2001:658:22a:cafe:ffff:ffff:ffff:ffff’) .netmask: IPv6Address(‘ffff:ffff:ffff:ffff::’) .prefixlen:
64

with_netmask

exception networkapi.infrastructure.ipaddr.NetmaskValueError
Bases: exceptions.ValueError

A Value Error related to the netmask.

networkapi.infrastructure.ipaddr.collapse_address_list(addresses)
Collapse a list of IP objects.

Example:

collapse_address_list([IPv4(‘1.1.0.0/24’), IPv4(‘1.1.1.0/24’)]) -> [IPv4(‘1.1.0.0/23’)]

Args: addresses: A list of IPv4Network or IPv6Network objects.

Returns: A list of IPv4Network or IPv6Network objects depending on what we were passed.

Raises: TypeError: If passed a list of mixed version objects.

networkapi.infrastructure.ipaddr.get_mixed_type_key(obj)
Return a key suitable for sorting between networks and addresses.

Address and Network objects are not sortable by default; they’re fundamentally different so the expression

IPv4Address(‘1.1.1.1’) <= IPv4Network(‘1.1.1.1/24’)

doesn’t make any sense. There are some times however, where you may wish to have ipaddr sort these for you
anyway. If you need to do this, you can use this function as the key= argument to sorted().

Args: obj: either a Network or Address object.

Returns: appropriate key.

networkapi.infrastructure.ipaddr.summarize_address_range(first, last)
Summarize a network range given the first and last IP addresses.

Example:

>>> summarize_address_range(IPv4Address(’1.1.1.0’),
IPv4Address(’1.1.1.130’))

[IPv4Network(’1.1.1.0/25’), IPv4Network(’1.1.1.128/31’),
IPv4Network(’1.1.1.130/32’)]

Args: first: the first IPv4Address or IPv6Address in the range. last: the last IPv4Address or IPv6Address in the
range.

Returns: The address range collapsed to a list of IPv4Network’s or IPv6Network’s.

Raise:

6.1. networkapi package 35

src Documentation, Release 3.4.2

TypeError: If the first and last objects are not IP addresses. If the first and last objects are not the same
version.

ValueError: If the last object is not greater than the first. If the version is not 4 or 6.

networkapi.infrastructure.ipaddr.v4_int_to_packed(address)
The binary representation of this address.

Args: address: An integer representation of an IPv4 IP address.

Returns: The binary representation of this address.

Raises:

ValueError: If the integer is too large to be an IPv4 IP address.

networkapi.infrastructure.ipaddr.v6_int_to_packed(address)
The binary representation of this address.

Args: address: An integer representation of an IPv4 IP address.

Returns: The binary representation of this address.

networkapi.infrastructure.script_utils module

exception networkapi.infrastructure.script_utils.ScriptError(cause, message)
Bases: exceptions.Exception

Representa um erro ocorrido durante a chamada do script.

networkapi.infrastructure.script_utils.exec_script(command)

networkapi.infrastructure.xml_utils module

exception networkapi.infrastructure.xml_utils.InvalidNodeNameXMLError(cause,
message)

Bases: networkapi.infrastructure.xml_utils.XMLError

Nome inválido para representá-lo como uma TAG de XML.

exception networkapi.infrastructure.xml_utils.InvalidNodeTypeXMLError(cause,
message)

Bases: networkapi.infrastructure.xml_utils.XMLError

Tipo inválido para o conteúdo de uma TAG de XML.

exception networkapi.infrastructure.xml_utils.XMLError(cause, message)
Bases: exceptions.Exception

Representa um erro ocorrido durante o marshall ou unmarshall do XML.

networkapi.infrastructure.xml_utils.dumps(map, root_name, root_attributes=None)
Cria um string no formato XML a partir dos elementos do map.

Os elementos do mapa serão nós filhos do root_name.

Cada chave do map será um Nó no XML. E o valor da chave será o conteúdo do Nó.

Throws: XMLError, InvalidNodeNameXMLError, InvalidNodeTypeXMLError

networkapi.infrastructure.xml_utils.dumps_networkapi(map, version=‘1.0’)

36 Chapter 6. Globo NetworkAPI API Docs

src Documentation, Release 3.4.2

networkapi.infrastructure.xml_utils.loads(xml, force_list=None)
Cria um dict com os dados do element root.

O dict terá como chave o nome do element root e como valor o conteúdo do element root. Quando o conteúdo de
um element é uma lista de Nós então o valor do element será um dict com uma chave para cada nó. Entretanto,
se existir nós, de um mesmo pai, com o mesmo nome, então eles serão armazenados uma mesma chave do dict
que terá como valor uma lista.

Se o element root tem atributo, então também retorna um dict com os atributos.

Throws: XMLError

Module contents

networkapi.interface package

Subpackages

networkapi.interface.resource package

Submodules

networkapi.interface.resource.InterfaceDisconnectResource module

networkapi.interface.resource.InterfaceGetResource module

networkapi.interface.resource.InterfaceResource module

Module contents

networkapi.interface.test package

Submodules

networkapi.interface.test.test_Interface module

Module contents

Submodules

networkapi.interface.models module

Module contents

networkapi.ip package

6.1. networkapi package 37

src Documentation, Release 3.4.2

Subpackages

networkapi.ip.resource package

Submodules

networkapi.ip.resource.IPEquipEvipResource module

networkapi.ip.resource.IPGetByEquipResource module

networkapi.ip.resource.IPv4AddResource module

networkapi.ip.resource.IPv4DeleteResource module

networkapi.ip.resource.IPv4EditResource module

networkapi.ip.resource.IPv4GetAvailableResource module

networkapi.ip.resource.IPv4GetResource module

networkapi.ip.resource.IPv4ListResource module

networkapi.ip.resource.IPv4SaveResource module

networkapi.ip.resource.IPv6AddResource module

networkapi.ip.resource.IPv6DeleteResource module

networkapi.ip.resource.IPv6EditResource module

networkapi.ip.resource.IPv6GetAvailableResource module

networkapi.ip.resource.IPv6GetResource module

networkapi.ip.resource.IPv6ListResource module

networkapi.ip.resource.IPv6SaveResource module

networkapi.ip.resource.IpCheckForVipResource module

networkapi.ip.resource.IpGetOctBlockResource module

38 Chapter 6. Globo NetworkAPI API Docs

src Documentation, Release 3.4.2

networkapi.ip.resource.IpResource module

networkapi.ip.resource.Ipv4AssocEquipResource module

networkapi.ip.resource.Ipv4GetAvailableForVipResource module

networkapi.ip.resource.Ipv4GetByIdResource module

networkapi.ip.resource.Ipv6AssocEquipResource module

networkapi.ip.resource.Ipv6AssociateResource module

networkapi.ip.resource.Ipv6GetAvailableForVipResource module

networkapi.ip.resource.Ipv6GetByIdResource module

networkapi.ip.resource.Ipv6RemoveResource module

networkapi.ip.resource.NetworkAddResource module

networkapi.ip.resource.NetworkEditResource module

networkapi.ip.resource.NetworkIPv4AddResource module

networkapi.ip.resource.NetworkIPv4DeallocateResource module

networkapi.ip.resource.NetworkIPv4GetResource module

networkapi.ip.resource.NetworkIPv6AddResource module

networkapi.ip.resource.NetworkIPv6DeallocateResource module

networkapi.ip.resource.NetworkIPv6GetResource module

networkapi.ip.resource.NetworkRemoveResource module

networkapi.ip.resource.SearchIPv6EnvironmentResource module

Module contents

networkapi.ip.test package

6.1. networkapi package 39

src Documentation, Release 3.4.2

Submodules

networkapi.ip.test.test_Ip module

networkapi.ip.test.test_Network module

Module contents

Submodules

networkapi.ip.ipcalc module

class networkapi.ip.ipcalc.IP(ip, mask=None, version=0)
Bases: object

Represents a single IP address.

>>> localhost = IP("127.0.0.1")
>>> print localhost
127.0.0.1
>>> localhost6 = IP("::1")
>>> print localhost6
0000:0000:0000:0000:0000:0000:0000:0001

bin()
Full-length binary representation of the IP address.

>>> ip = IP("127.0.0.1")
>>> print ip.bin()
01111111000000000000000000000001

clone()
Return a new <IP> object with a copy of this one.

>>> ip = IP(’127.0.0.1’)
>>> ip.clone()
<ipcalc.IP object at 0xb7d4d18c>

hex()
Full-length hexadecimal representation of the IP address.

>>> ip = IP("127.0.0.1")
>>> print ip.hex()
7f000001

info()
Show IANA allocation information for the current IP address.

>>> ip = IP("127.0.0.1")
>>> print ip.info()
CLASS A

size()

subnet()

40 Chapter 6. Globo NetworkAPI API Docs

src Documentation, Release 3.4.2

to_ipv4()
Convert (an IPv6) IP address to an IPv4 address, if possible. Only works for IPv4-compat (::/96) and
6-to-4 (2002::/16) addresses.

>>> ip = IP(’2002:c000:022a::’)
>>> print ip.to_ipv4()
192.0.2.42

to_ipv6(type=‘6-to-4’)
Convert (an IPv4) IP address to an IPv6 address.

>>> ip = IP(’192.0.2.42’)
>>> print ip.to_ipv6()
2002:c000:022a:0000:0000:0000:0000:0000

to_tuple()
Used for comparisons.

version()
IP version.

>>> ip = IP("127.0.0.1")
>>> print ip.version()
4

class networkapi.ip.ipcalc.Network(ip, mask=None, version=0)
Bases: networkapi.ip.ipcalc.IP

Network slice calculations.

>>> localnet = Network(’127.0.0.1/8’)
>>> print localnet
127.0.0.1

broadcast()
Broadcast address.

>>> localnet = Network(’127.0.0.1/8’)
>>> print localnet.broadcast()
127.255.255.255

has_key(ip)
Check if the given ip is part of the network.

>>> net = Network(’192.0.2.0/24’)
>>> net.has_key(’192.168.2.0’)
False
>>> net.has_key(’192.0.2.42’)
True

host_first()
First available host in this subnet.

host_last()
Last available host in this subnet.

in_network(other)
Check if the given IP address is within this network.

netmask()
Network netmask derived from subnet size.

6.1. networkapi package 41

src Documentation, Release 3.4.2

>>> localnet = Network(’127.0.0.1/8’)
>>> print localnet.netmask()
255.0.0.0

network()
Network address.

>>> localnet = Network(’127.128.99.3/8’)
>>> print localnet.network()
127.0.0.0

size()
Number of ip’s within the network.

>>> net = Network(’192.0.2.0/24’)
>>> print net.size()
256

networkapi.ip.models module

Module contents

networkapi.models package

Submodules

networkapi.models.BaseManager module

networkapi.models.BaseModel module

networkapi.models.models_signal_receiver module

Module contents

networkapi.requisicaovips package

Subpackages

networkapi.requisicaovips.resource package

Submodules

networkapi.requisicaovips.resource.CreateVipResource module

networkapi.requisicaovips.resource.OptionVipAllGetByEnvironmentVipResource module

networkapi.requisicaovips.resource.OptionVipAllResource module

networkapi.requisicaovips.resource.OptionVipEnvironmentVipAssociationResource module

42 Chapter 6. Globo NetworkAPI API Docs

src Documentation, Release 3.4.2

networkapi.requisicaovips.resource.OptionVipGetBalanceamentoByEVipResource module

networkapi.requisicaovips.resource.OptionVipGetGrupoCacheByEVipResource module

networkapi.requisicaovips.resource.OptionVipGetHealthcheckByEVipResource module

networkapi.requisicaovips.resource.OptionVipGetPersistenciaByEVipResource module

networkapi.requisicaovips.resource.OptionVipGetTimeoutByEVipResource module

networkapi.requisicaovips.resource.OptionVipResource module

networkapi.requisicaovips.resource.RemoveVipResource module

networkapi.requisicaovips.resource.RequestAllVipsIPv4Resource module

networkapi.requisicaovips.resource.RequestAllVipsIPv6Resource module

networkapi.requisicaovips.resource.RequestAllVipsResource module

networkapi.requisicaovips.resource.RequestHealthcheckResource module

networkapi.requisicaovips.resource.RequestMaxconResource module

networkapi.requisicaovips.resource.RequestPriorityResource module

networkapi.requisicaovips.resource.RequestVipGetByIdResource module

networkapi.requisicaovips.resource.RequestVipGetIdIpResource module

networkapi.requisicaovips.resource.RequestVipGetRulesByEVipResource module

networkapi.requisicaovips.resource.RequestVipL7ApplyResource module

networkapi.requisicaovips.resource.RequestVipL7Resource module

networkapi.requisicaovips.resource.RequestVipL7RollbackResource module

networkapi.requisicaovips.resource.RequestVipL7ValidateResource module

networkapi.requisicaovips.resource.RequestVipRealEditResource module

6.1. networkapi package 43

src Documentation, Release 3.4.2

networkapi.requisicaovips.resource.RequestVipRealValidResource module

networkapi.requisicaovips.resource.RequestVipRuleResource module

networkapi.requisicaovips.resource.RequestVipValidateResource module

networkapi.requisicaovips.resource.RequestVipsRealResource module

networkapi.requisicaovips.resource.RequestVipsResource module

networkapi.requisicaovips.resource.RequisicaoVipDeleteResource module

networkapi.requisicaovips.resource.RequisicaoVipsResource module

Module contents

networkapi.requisicaovips.test package

Submodules

networkapi.requisicaovips.test.test_OptionVIP module

networkapi.requisicaovips.test.test_VipRequest module

Module contents

Submodules

networkapi.requisicaovips.models module

Module contents

networkapi.roteiro package

Subpackages

networkapi.roteiro.resource package

Submodules

networkapi.roteiro.resource.RoteiroResource module

44 Chapter 6. Globo NetworkAPI API Docs

src Documentation, Release 3.4.2

networkapi.roteiro.resource.ScriptAddResource module

networkapi.roteiro.resource.ScriptAlterRemoveResource module

networkapi.roteiro.resource.ScriptGetAllResource module

networkapi.roteiro.resource.ScriptGetEquipmentResource module

networkapi.roteiro.resource.ScriptGetScriptTypeResource module

networkapi.roteiro.resource.ScriptTypeAddResource module

networkapi.roteiro.resource.ScriptTypeAlterRemoveResource module

networkapi.roteiro.resource.ScriptTypeGetAllResource module

Module contents

networkapi.roteiro.test package

Submodules

networkapi.roteiro.test.test_Script module

networkapi.roteiro.test.test_ScriptType module

Module contents

Submodules

networkapi.roteiro.models module

Module contents

networkapi.semaforo package

Submodules

networkapi.semaforo.model module

Module contents

6.1. networkapi package 45

src Documentation, Release 3.4.2

networkapi.test package

Submodules

networkapi.test.assertions module

networkapi.test.functions module

networkapi.test.mock_scripts module

networkapi.test.utils module

Module contents

networkapi.tipoacesso package

Subpackages

networkapi.tipoacesso.resource package

Submodules

networkapi.tipoacesso.resource.TipoAcessoResource module

Module contents

networkapi.tipoacesso.test package

Submodules

networkapi.tipoacesso.test.test_AccessType module

Module contents

Submodules

networkapi.tipoacesso.models module

Module contents

networkapi.usuario package

Subpackages

networkapi.usuario.resource package

46 Chapter 6. Globo NetworkAPI API Docs

src Documentation, Release 3.4.2

Submodules

networkapi.usuario.resource.AuthenticateResource module

networkapi.usuario.resource.UserAddResource module

networkapi.usuario.resource.UserAlterRemoveResource module

networkapi.usuario.resource.UserGetAllResource module

networkapi.usuario.resource.UserGetByGroupUserOutGroup module

networkapi.usuario.resource.UserGetByGroupUserResource module

networkapi.usuario.resource.UserGetByIdResource module

networkapi.usuario.resource.UserGetByLdapResource module

networkapi.usuario.resource.UserGroupAssociateResource module

networkapi.usuario.resource.UserGroupDissociateResource module

networkapi.usuario.resource.UsuarioChangePassResource module

networkapi.usuario.resource.UsuarioGetResource module

Module contents

networkapi.usuario.test package

Submodules

networkapi.usuario.test.test_User module

networkapi.usuario.test.test_UserGroup module

Module contents

6.1. networkapi package 47

src Documentation, Release 3.4.2

Submodules

networkapi.usuario.models module

Module contents

networkapi.vlan package

Subpackages

networkapi.vlan.resource package

Submodules

networkapi.vlan.resource.NetworkTypeResource module

networkapi.vlan.resource.TipoRedeResource module

networkapi.vlan.resource.VlanAllocateIPv6Resorce module

networkapi.vlan.resource.VlanAllocateResource module

networkapi.vlan.resource.VlanApplyAcl module

networkapi.vlan.resource.VlanCheckNumberAvailable module

networkapi.vlan.resource.VlanCreateAclResource module

networkapi.vlan.resource.VlanCreateResource module

networkapi.vlan.resource.VlanCreateScriptAclResource module

networkapi.vlan.resource.VlanDeallocateResource module

networkapi.vlan.resource.VlanEditResource module

networkapi.vlan.resource.VlanFindResource module

networkapi.vlan.resource.VlanGetByEnvironmentResource module

networkapi.vlan.resource.VlanInsertResource module

48 Chapter 6. Globo NetworkAPI API Docs

src Documentation, Release 3.4.2

networkapi.vlan.resource.VlanInvalidateResource module

networkapi.vlan.resource.VlanListResource module

networkapi.vlan.resource.VlanRemoveResource module

networkapi.vlan.resource.VlanResource module

networkapi.vlan.resource.VlanSearchResource module

networkapi.vlan.resource.VlanValidateResource module

Module contents

networkapi.vlan.test package

Submodules

networkapi.vlan.test.test_NetType module

networkapi.vlan.test.test_Vlan module

Module contents

Submodules

networkapi.vlan.models module

Module contents

Submodules

networkapi.SQLLogMiddleware module

networkapi.admin_permission module

class networkapi.admin_permission.AdminPermission
Bases: object

ACCESS_TYPE_MANAGEMENT = ‘cadastro_de_tipo_acesso’

ACL_APPLY = ‘aplicar_acl’

ACL_VLAN_VALIDATION = ‘validar_acl_vlans’

AS_MANAGEMENT = ‘as_management’

6.1. networkapi package 49

src Documentation, Release 3.4.2

AUDIT_LOG = ‘audit_logs’

AUTHENTICATE = ‘authenticate’

BRAND_MANAGEMENT = ‘cadastro_de_marca’

ENVIRONMENT_MANAGEMENT = ‘cadastro_de_ambiente’

ENVIRONMENT_VIP = ‘ambiente_vip’

EQUIPMENT_GROUP_MANAGEMENT = ‘cadastro_de_grupos_equipamentos’

EQUIPMENT_MANAGEMENT = ‘cadastro_de_equipamentos’

EQUIP_READ_OPERATION = ‘READ’

EQUIP_UPDATE_CONFIG_OPERATION = ‘UPDATE_CONFIG’

EQUIP_WRITE_OPERATION = ‘WRITE’

HEALTH_CHECK_EXPECT = ‘healthcheck_expect’

IPS = ‘ips’

LIST_CONFIG_BGP_DEPLOY_SCRIPT = ‘list_config_bgp_deploy_script’

LIST_CONFIG_BGP_MANAGEMENT = ‘list_config_bgp_management’

LIST_CONFIG_BGP_UNDEPLOY_SCRIPT = ‘list_config_bgp_undeploy_script’

NEIGHBOR_DEPLOY_SCRIPT = ‘neighbor_deploy_script’

NEIGHBOR_MANAGEMENT = ‘neighbor_management’

NEIGHBOR_UNDEPLOY_SCRIPT = ‘neighbor_undeploy_script’

NETWORK_FORCE = ‘network_force’

NETWORK_TYPE_MANAGEMENT = ‘cadastro_de_tipo_rede’

OBJ_DELETE_OPERATION = ‘DELETE’

OBJ_READ_OPERATION = ‘READ’

OBJ_TYPE_PEER_GROUP = ‘PeerGroup’

OBJ_TYPE_POOL = ‘ServerPool’

OBJ_TYPE_VIP = ‘VipRequest’

OBJ_TYPE_VLAN = ‘Vlan’

OBJ_UPDATE_CONFIG_OPERATION = ‘UPDATE_CONFIG’

OBJ_WRITE_OPERATION = ‘WRITE’

OPTION_VIP = ‘opcao_vip’

PEER_GROUP_MANAGEMENT = ‘peer_group_management’

POOL_ALTER_SCRIPT = ‘script_alterar_pool’

POOL_CREATE_SCRIPT = ‘script_criacao_pool’

POOL_DELETE_OPERATION = ‘DELETE’

POOL_MANAGEMENT = ‘cadastro_de_pool’

POOL_READ_OPERATION = ‘READ’

POOL_REMOVE_SCRIPT = ‘script_remover_pool’

50 Chapter 6. Globo NetworkAPI API Docs

src Documentation, Release 3.4.2

POOL_UPDATE_CONFIG_OPERATION = ‘UPDATE_CONFIG’

POOL_WRITE_OPERATION = ‘WRITE’

READ_OPERATION = ‘READ’

ROUTE_MAP_DEPLOY_SCRIPT = ‘route_map_deploy_script’

ROUTE_MAP_MANAGEMENT = ‘route_map_management’

ROUTE_MAP_UNDEPLOY_SCRIPT = ‘route_map_undeploy_script’

SCRIPT_MANAGEMENT = ‘cadastro_de_roteiro’

TELCO_CONFIGURATION = ‘configuracao_telco’

USER_ADMINISTRATION = ‘administracao_usuarios’

VIPS_REQUEST = ‘requisicao_vips’

VIP_ALTER_SCRIPT = ‘script_alterar_vip’

VIP_CREATE_SCRIPT = ‘script_criacao_vip’

VIP_DELETE_OPERATION = ‘DELETE’

VIP_READ_OPERATION = ‘READ’

VIP_REMOVE_SCRIPT = ‘script_remover_vip’

VIP_UPDATE_CONFIG_OPERATION = ‘UPDATE_CONFIG’

VIP_VALIDATION = ‘validar_vip’

VIP_WRITE_OPERATION = ‘WRITE’

VLAN_ALLOCATION = ‘alocar_vlan’

VLAN_ALTER_SCRIPT = ‘script_alterar_vlan’

VLAN_CREATE_SCRIPT = ‘script_criacao_vlan’

VLAN_MANAGEMENT = ‘cadastro_de_vlans’

VM_MANAGEMENT = ‘cadastro_de_vm’

WRITE_OPERATION = ‘WRITE’

networkapi.conftest module

networkapi.cvs module

exception networkapi.cvs.CVSCommandError(error)
Bases: networkapi.cvs.CVSError

exception networkapi.cvs.CVSError(error)
Bases: exceptions.Exception

class networkapi.cvs.Cvs

classmethod add(archive)
Execute command add in cvs

@param archive: file to be add

@raise CVSCommandError: Failed to execute command

6.1. networkapi package 51

src Documentation, Release 3.4.2

classmethod commit(archive, comment)
Execute command commit in cvs

@param archive: file to be committed @param comment: comments

@raise CVSCommandError: Failed to execute command

classmethod remove(archive)
Execute command remove in cvs

@param archive: file to be remove

@raise CVSCommandError: Failed to execute command

classmethod synchronization()
Execute command update in cvs

@raise CVSCommandError: Failed to execute command

networkapi.environment_settings module

networkapi.settings.local_files(path)

networkapi.error_message_utils module

networkapi.error_message_utils.error_dumps(code, *args)

networkapi.exception module

exception networkapi.exception.AddBlockOverrideNotDefined(cause, message=None)
Bases: networkapi.exception.CustomException

Represents an error occurred when attempting to change a VIP that has not been created.

exception networkapi.exception.CustomException(cause, message=None)
Bases: exceptions.Exception

Represents an error occurred validating a value.

exception networkapi.exception.EnvironmentEnvironmentServerPoolLinked(cause,
mes-
sage=None)

Bases: networkapi.exception.CustomException

returns exception to EnvironmentEnvironmentVip error.

exception networkapi.exception.EnvironmentEnvironmentVipDuplicatedError(cause,
mes-
sage=None)

Bases: networkapi.exception.CustomException

returns exception to EnvironmentEnvironmentVip duplicated.

exception networkapi.exception.EnvironmentEnvironmentVipError(cause, mes-
sage=None)

Bases: networkapi.exception.CustomException

returns exception to EnvironmentEnvironmentVip error.

52 Chapter 6. Globo NetworkAPI API Docs

src Documentation, Release 3.4.2

exception networkapi.exception.EnvironmentEnvironmentVipNotFoundError(cause,
mes-
sage=None)

Bases: networkapi.exception.CustomException

returns exception to EnvironmentEnvironmentVip research by primary key.

exception networkapi.exception.EnvironmentNotFoundError(cause, message=None)
Bases: networkapi.exception.CustomException

returns exception to Environment research by primary key.

exception networkapi.exception.EnvironmentVipAssociatedToSomeNetworkError(cause,
mes-
sage=None)

Bases: networkapi.exception.EnvironmentVipError

returns exception to environment vip delete when it’s associated to some Network

exception networkapi.exception.EnvironmentVipError(cause, message=None)
Bases: networkapi.exception.CustomException

Represents an error occurred during access to tables related to environment VIP.

exception networkapi.exception.EnvironmentVipNotFoundError(cause, message=None)
Bases: networkapi.exception.EnvironmentVipError

returns exception to environment research by primary key.

exception networkapi.exception.EquipmentGroupsNotAuthorizedError(cause, mes-
sage=None)

Bases: networkapi.exception.CustomException

Represents an error when the groups of equipment registered with the IP of the VIP request is not allowed acess.

exception networkapi.exception.InvalidValueError(cause, param=None, value=None)
Bases: exceptions.Exception

Represents an error occurred validating a value.

exception networkapi.exception.NetworkActiveError(cause=None, message=None)
Bases: networkapi.exception.CustomException

Exception returned when network is active and someone is trying to remove it

DEFAULT_MESSAGE = “Can’t remove network because it is active”

exception networkapi.exception.NetworkInactiveError(cause=u’Unable to remove the net-
work because it is inactive.’, mes-
sage=None)

Bases: networkapi.exception.CustomException

Returns exception when trying to disable a network disabled

exception networkapi.exception.OptionPoolEnvironmentDuplicatedError(cause, mes-
sage=None)

Bases: networkapi.exception.OptionPoolEnvironmentError

returns exception if OptionPool is already associated with EnvironmentVip.

exception networkapi.exception.OptionPoolEnvironmentError(cause, message=None)
Bases: networkapi.exception.CustomException

Represents an error occurred during access to tables related to OptionPoolEnvironmentVip.

6.1. networkapi package 53

src Documentation, Release 3.4.2

exception networkapi.exception.OptionPoolEnvironmentNotFoundError(cause, mes-
sage=None)

Bases: networkapi.exception.OptionPoolEnvironmentError

returns exception to OptionPoolEnvironmentVip research by primary key.

exception networkapi.exception.OptionPoolError(cause, message=None)
Bases: networkapi.exception.CustomException

Represents an error occurred during access to tables related to Option Pool.

exception networkapi.exception.OptionPoolNotFoundError(cause, message=None)
Bases: networkapi.exception.OptionPoolError

returns exception to Option pool research by primary key.

exception networkapi.exception.OptionPoolServiceDownNoneError(cause, mes-
sage=None)

Bases: networkapi.exception.CustomException

returns exception if OptionPool service-down-action “none” option does not exists.

exception networkapi.exception.OptionVipEnvironmentVipDuplicatedError(cause,
mes-
sage=None)

Bases: networkapi.exception.OptionVipEnvironmentVipError

returns exception if OptionVip is already associated with EnvironmentVip.

exception networkapi.exception.OptionVipEnvironmentVipError(cause, message=None)
Bases: networkapi.exception.CustomException

Represents an error occurred during access to tables related to OptionVipEnvironmentVip.

exception networkapi.exception.OptionVipEnvironmentVipNotFoundError(cause, mes-
sage=None)

Bases: networkapi.exception.OptionVipEnvironmentVipError

returns exception to OptionVipEnvironmentVip research by primary key.

exception networkapi.exception.OptionVipError(cause, message=None)
Bases: networkapi.exception.CustomException

Represents an error occurred during access to tables related to Option VIP.

exception networkapi.exception.OptionVipNotFoundError(cause, message=None)
Bases: networkapi.exception.OptionVipError

returns exception to Option vip research by primary key.

exception networkapi.exception.RequestVipsNotBeenCreatedError(cause, mes-
sage=None)

Bases: networkapi.exception.CustomException

Represents an error occurred when attempting to change a VIP that has not been created.

networkapi.log module

class networkapi.log.CommonAdminEmailHandler(include_html=False)
Bases: django.utils.log.AdminEmailHandler

An exception log handler that e-mails log entries to site admins. If the request is passed as the first argument to
the log record, request data will be provided in the

emit(record)

54 Chapter 6. Globo NetworkAPI API Docs

src Documentation, Release 3.4.2

class networkapi.log.Log(module_name)
Bases: object

Classe responsável por encapsular a API de logging. Encapsula as funcionalidades da API de logging de forma
a adicionar o nome do módulo nas mensagens que forem impressas.

debug(msg, *args)
Imprime uma mensagem de debug no log

error(msg, *args)
Imprime uma mensagem de erro no log

info(msg, *args)
Imprime uma mensagem de informação no log

classmethod init_log(log_file_name=’/tmp/networkapi.log’, number_of_days_to_log=10,
log_level=10, log_format=’%(asctime)s %(request_user)-6s %(request_path)-
8s %(request_id)-6s %(levelname)-6s - %(message)s’, use_stdout=True,
max_line_size=2048)

rest(msg, *args)

warning(msg, *args)
Imprime uma mensagem de advertência no log

class networkapi.log.MultiprocessTimedRotatingFileHandler(filename, when=’h’, inter-
val=1, backupCount=0,
encoding=None, de-
lay=False, utc=False)

Bases: logging.handlers.TimedRotatingFileHandler

doRollover()
do a rollover; in this case, a date/time stamp is appended to the filename when the rollover happens.
However, you want the file to be named for the start of the interval, not the current time. If there is a
backup count, then we have to get a list of matching filenames, sort them and remove the one with the
oldest suffix.

class networkapi.log.NetworkAPILogFormatter(fmt=None, datefmt=None)
Bases: logging.Formatter

formatException(ei)

networkapi.log.convert_to_utf8(object)
Converte o object informado para uma representação em utf-8

networkapi.log.get_lock()
Obtém lock para evitar que várias mensagens sejam sobrepostas no log

networkapi.log.release_lock()
Obtém lock para evitar que várias mensagens sejam sobrepostas no log

networkapi.processExceptionMiddleware module

class networkapi.processExceptionMiddleware.LoggingMiddleware
Bases: object

process_exception(request, exception)
HIDE PASSWORD VALUES

6.1. networkapi package 55

src Documentation, Release 3.4.2

networkapi.rest module

networkapi.settings module

networkapi.settings.local_files(path)

networkapi.sitecustomize module

networkapi.teste module

networkapi.urls module

networkapi.util module

Module contents

56 Chapter 6. Globo NetworkAPI API Docs

CHAPTER 7

Using GloboNetworkAPI V3

Improve GET requests through some extra parameters

When making GET request in V3 routes, you can choose what fields will come into response using the following
parameters: kind, fields, include and exclude. When none of these parameters are used, NetworkAPI will return a
default payload for each module. Depending on your needs, the use of these extra parameters will make your requests
faster mainly if you are dealing with many objects. In addition, it is possible to obtain more information about fields
that acts as a foreign keys. Look at the examples in each section to understand better.

Vip Request and Network IPv4 modules are used in the examples, consult them to obtain more information about its
payload.

Kind parameter

Each module returns a default payload when none of extra parameters are used. With kind parameter you can change
the default payload to some other two. Look the modules documentation for know about these payloads. kind accepts
only ‘basic’ or ‘details’. In general, the payload for ‘basic’ contains little information while ‘details’ contains so much
data.

Suppose that you want to get the basic payload in Vip Request. Use this:

kind=basic

Fields parameter

The fields parameter is used when you want to get only the fields that you specify.

Suppose that you want only id and name fields in Vip Request. Use this:

fields=id,name

Include parameter

The include parameter is used to append some field which is not contained on the default payload. Do not use this
together fields.

Suppose that you want to get the default payload plus ‘dscp’ and ‘equipments’ fields in Vip Request. Use this:

57

src Documentation, Release 3.4.2

include=dscp,equipments

Exclude parameter

The exclude parameter is used to remove some field of the default payload. Do not use this together fields.

Suppose that you want to get the default payload except ‘ipv4’ and ‘ipv6’ fields in Vip Request. Use this:

exclude=ipv4,ipv6

Using Include and Exclude together

Suppose that you want to get the default payload except ‘ipv4’ field and plus ‘dscp’ field in Vip Request. Use this:

exclude=ipv4&include=dscp

Using Kind and Include together

Suppose that you want to get the basic payload plus ‘dscp’ field in Vip Request. Use this:

kind=basic&include=dscp

Using Kind and Exclude together

Suppose that you want to get the details payload except ‘ipv4’ field in Vip Request. Use this:

kind=details&exclude=ipv4

Using Kind, Include and Exclude together

Suppose that you want to get the basic payload plus ‘dscp’ field and except ‘ipv4’ field in Vip Request. Use this:

kind=basic&include=dscp&exclude=ipv4

Getting more information from fields that acts as a foreign key

Through fields and include parameters, you can obtain more information for fields that acts as a foreign key. If you
are dealing with such a field, you can through this ‘descend or rise’ like a tree.

For a simple example, suppose that you make a GET Request for Network IPv4 module to get only vlan field. You
certainly would use this:

fields=vlan

Doing the above, you will get only the identifier of the Vlan. But you want not only the identifier, but also the name
of the Vlan. Instead of create a new request for Vlan module, you can at same Network IPv4 request obtain this
information. See below how to do this:

fields=vlan__details

58 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

Now, Vlan field is not anymore an integer field, but it is a dictionary with some more information as the vlan name
and the identifier of environment related to this Vlan. Let’s say now you want the name of this Environment. Again
you don’t need to create a new request to Environment module, because using the same Network IPv4 request you can
get this information. Look below the way to do this:

fields=vlan__details__environment__basic

Now you have only one JSON with information from various places. In this way you can obtain lots of information in
a faster way relieving Network API and reducing time for your application to get a lot of data that is related to each
other.

Datacenter module

Data Center /api/dc/

POST

Creating a Data Center object

URL:

/api/dc/

Request body:

{
"dc": {
"dcname": <string>,
"address": <string>
}

}

Request Example:

{
"dc": {
"dcname": "POP-SP",
"address": "SP"
}

}

All fields are required:

• dcname - It is the name of the Data Center.

address - It is the location of the Data Center.

At the end of POST request, it will be returned a json with the Data Center object created.

Response Body:

{
"dc": {
"id": 1
"dcname": "POP-SP",
"address": "SP"
}

}

7.2. Datacenter module 59

src Documentation, Release 3.4.2

PUT

Editing a Data Center object

GET

Obtaining list of Data Centers

URL:

/api/dc/

Default behavior

The response body will look like this:

Response body:

{
"dc": [{

"id": <integer>,
"dcname": <string>,
"address": <string>,
"fabric": <list>

},...]
}

DELETE

Deleting a Data Center object

URL:

/api/dc/<dc_id>/

where dc_id is the identifier of Data Center’s desired to delete.

Example with Parameter ID:

/api/dc/1/

Fabric /api/dcrooms/

POST

Creating a Fabric object

URL:

/api/dcrooms/

Request body:

60 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

{
"dcrooms": {

"dc": <integer:dc_fk>,
"name": <string>,
"racks": <integer>,
"spines": <integer>,
"leafs": <integer>,
"config": <dict>

}
}

Request Example:

{
"dcrooms": {

"dc": 1,
"name":"Fabric name",
"racks": 32,
"spines": 4,
"leafs": 2,
"config": {}

}
}

• dc - It is the fk of the Data Center.

name - It is the name of the Fabric. racks - Total number of the racks in a fabric. spines - Total number
of the spines in a fabric. leafs - Total number of the leafes in a fabric. config - Json with the father’s
environments related to the fabric and it’s peculiarities.

Only fields ‘dc’ and ‘name’ are required.

Example of config json:

{
"BGP": {
"spines": <string: AS Number>,
"mpls": <string: AS Number>,
"leafs": <string: AS Number>

},
"Gerencia": {
"telecom": {

"vlan": <string: Vlan Number>,
"rede": <string: IPv4 Net>

}
},
"VLT": {
"id_vlt_lf1": <string: VLT ID Number>,
"priority_vlt_lf1": <string: VLT priority Number>,
"priority_vlt_lf2": <string: VLT priority Number>,
"id_vlt_lf2": <string: VLT ID Number>

},
"Ambiente": [
{

"id": <integer: env_fk>,
"details": [

{
"name": <string: Name of the new environment - E.g.: BEFE>,
"min_num_vlan_1": <integer: Minimum number for Vlan>,
"max_num_vlan_1": <integer: Maximum number for Vlan>,

7.2. Datacenter module 61

src Documentation, Release 3.4.2

"config": [
{
"subnet": <string: IPv4 or IPv6 Net>,
"type": <string: v4 or v6>,
"mask": <integer: net mask>,
"network_type": <integer: net_type_fk>,
"new_prefix": <integer: subnet mask>

},...
]

}, ...
]

},
{

"id": <integer: env_fk>,
"details": []

},...
{

"id": <integer: env_fk>,
"details": [

{
"v4": {

"new_prefix": <string: subnet mask>
},
"v6": {

"new_prefix": <string: subnet mask>
}

}
]

},...
],
"Channel": {
"channel": <string: Port Channel base Number>

}
}

At the end of POST request, it will be returned a json with the Fabric object created.

Response Body:

{
"dcrooms": {

"id": 1
"dc": 1,
"name":"Fabric name",
"racks": 32,
"spines": 4,
"leafs": 2,
"config": {}

}
}

GET

Obtaining list of Fabrics

URL:

62 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

/api/dcrooms/

Get a Fabric by id

URL:

/api/dcrooms/<fabric_fk>

where fabric_fk is the identifier of the fabric desired to be retrieved.

Get a Fabric by the datacenters id

URL:

/api/dcrooms/dc/<dc_fk>

where dc_fk is the identifier of the datacenter.

Default behavior

The response body will look like this:

Response body:

{
"fabric": [{

"id": 32,
"name": "POPF",
"dc": 3,
"racks": 8,
"spines": 4,
"leafs": 2,
"config": {...}

},
...]

}

PUT

Editing a Fabric object

URL:

/api/dcrooms/

Request body:

{
"dcrooms": {

"id": <interger:fabric_fk>,
"dc": <integer:dc_fk>,
"name": <string>,
"racks": <integer>,
"spines": <integer>,

7.2. Datacenter module 63

src Documentation, Release 3.4.2

"leafs": <integer>,
"config": <dict>

}
}

Request Example:

{
"dcrooms": {

"id": 1,
"dc": 1,
"name":"Fabric name",
"racks": 32,
"spines": 4,
"leafs": 2,
"config": {...}

}
}

Through Fabric PUT route you can update a object. These fields are required:

• id - It is the fk of the Fabric.

dc - It is the fk of the Data Center. name - It is the name of the Fabric.

At the end of PUT request, it will be returned the Fabric object updated.

Response Body:

{

“dcrooms”: { “id”: 1 “dc”: 1, “name”:”Fabric name”, “racks”: 32, “spines”: 4, “leafs”: 2, “con-
fig”: {...}

}

}

DELETE

Deleting a Fabric object

URL:

/api/dcrooms/

Racks /api/rack/

GET

Obtaining list of Racks

URL:

/api/rack/

64 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

Get a list of Racks by the fabric id URL:

/api/rack/fabric/<fabric_fk>

where fabric_fk is the identifier of the fabric.

Get a Rack by id URL:

/api/rack/<rack_fk>

where rack_fk is the identifier of the Rack desired to be retrieved.

Default behavior The response body will look like this:

Response body:

{
"racks": [{

"config": false,
"create_vlan_amb": false,
"dcroom": 1,
"id": 10,
"id_ilo": "OOB-CM-TE01",
"id_sw1": "LF-CM-TE01-1",
"id_sw2": "LF-CM-TE01-2",
"mac_ilo": "3F:FF:FF:FF:FF:10",
"mac_sw1": "1F:FF:FF:FF:FF:10",
"mac_sw2": "2F:FF:FF:FF:FF:10",
"nome": "TE10",
"numero": 10
},...

]
}

POST

Creating a Rack object

URL:

/api/rack/

Request body:

{
"rack":{

"name": <string>,
"number": <integer>,
"mac_sw1": <string:mac_address>,
"mac_sw2": <string:mac_address>,
"mac_ilo": <string:mac_address>,
"id_sw1": <integer:equipment_fk>,
"id_sw2": <integer:equipment_fk>,
"id_ilo": <integer:equipment_fk>,
"dcroom": <integer:fabric_fk>

}
}

7.2. Datacenter module 65

src Documentation, Release 3.4.2

Request Example:

{
"rack":{

"name": "TE01",
"number": 2,
"mac_sw1": "1F:FF:FF:FF:FF:FF",
"mac_sw2": "2F:FF:FF:FF:FF:FF",
"mac_ilo": "3F:FF:FF:FF:FF:FF",
"id_sw1": 1,
"id_sw2": 2,
"id_ilo": 3,
"dcroom": 16

}
}

• dcroom - It is the fk of the Fabric.

name - It is the name of the Rack. number - It is the number of the Rack. mac_sw[1,2] - It is the mac
address from each switch. id_sw[1,2] - It is the fk from each switch.

Only fields ‘name’ and ‘number’ are required.

At the end of POST request, it will be returned a json with the Rack object created.

Response Body:

{
"rack": {

"config": false,
"create_vlan_amb": false,
"dcroom": 16,
"id": 10,
"id_ilo": 3,
"id_sw1": 1,
"id_sw2": 2,
"mac_ilo": "3F:FF:FF:FF:FF:FF",
"mac_sw1": "1F:FF:FF:FF:FF:FF",
"mac_sw2": "2F:FF:FF:FF:FF:FF",
"nome": TE01,
"numero": 2
}

}

PUT

Editing a Rack object

URL:

/api/rack/<rack_fk>

Request body:

{

“rack”:

66 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

{ “config”: <boolean>, “create_vlan_amb”: <boolean>, “fabric_id”: <integer:fabric_id>, “id”: <in-
teger:rack_id>, “id_ilo”: <integer:equipment_id>, “id_sw1”: <integer:equipment_id>, “id_sw2”:
<integer:equipment_id>, “mac_ilo”: <string:mac_address>, “mac_sw1”: <string:mac_address>,
“mac_sw2”: <string:mac_address>, “nome”: “PUT10”, “numero”: <integer>

}

}

Request Example:

{

“rack”:

{ “config”: false, “create_vlan_amb”: false, “fabric_id”: 1, “id”: 10, “id_ilo”: 3, “id_sw1”: 1,
“id_sw2”: 2, “mac_ilo”: “3F:FF:FF:FF:FF:FF”, “mac_sw1”: “1F:FF:FF:FF:FF:FF”, “mac_sw2”:
“2F:FF:FF:FF:FF:FF”, “nome”: “PUT10”, “numero”: 10

}

}

Through PUT route you can update a rack object. These fields are required:

• id - It is the fk of the rack.

numero - It is the number of the rack. nome - It is the name of the rack.

At the end of PUT request, it will be returned the rack object updated.

Response Body:

{

“rack”: { “config”: false, “create_vlan_amb”: false, “dcroom”: 1, “id”: 10, “id_ilo”: “OOB-CM-
TE01”, “id_sw1”: “LF-CM-TE01-1”, “id_sw2”: “LF-CM-TE01-2”, “mac_ilo”: “3F:FF:FF:FF:FF:FF”,
“mac_sw1”: “1F:FF:FF:FF:FF:FF”, “mac_sw2”: “2F:FF:FF:FF:FF:FF”, “nome”: null, “numero”: null

}

}

DELETE

Deleting a Rack object

URL:

/api/rack/<rack_fk>/

where rack_fk is the identifier of Rack’s desired to delete.

Example with Parameter ID:

/api/rack/1/

7.2. Datacenter module 67

src Documentation, Release 3.4.2

Environment module

/api/v3/environment/

GET

Obtaining list of Environments

It is possible to specify in several ways fields desired to be retrieved in Environment module through the use of some
GET parameters. You are not required to use these parameters, but depending on your needs it can make your requests
faster if you are dealing with many objects and you need few fields. The following fields are available for Environment
module (hyperlinked or bold marked fields acts as foreign keys and can be expanded using __basic or __details when
using fields, include or exclude GET Parameters. Hyperlinked fields points to its documentation):

• id

• name

• grupo_l3

• ambiente_logico

• divisao_dc

• filter

• acl_path

• ipv4_template

• ipv6_template

• link

• min_num_vlan_1

• max_num_vlan_1

• min_num_vlan_2

• max_num_vlan_2

• vrf

• default_vrf

• father_environment

• children

• configs

• routers

• equipments

Obtaining list of Environments through id’s URL:

/api/v3/environment/[environment_ids]/

68 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

where environment_ids are the identifiers of Environments desired to be retrieved. It can use multiple id’s separated
by semicolons.

Example with Parameter IDs:

One ID:

/api/v3/environment/1/

Many IDs:

/api/v3/environment/1;3;8/

Obtaining list of Environments through extended search More information about Django QuerySet API, please
see:

:ref:‘Django QuerySet API reference <https://docs.djangoproject.com/el/1.10/ref/models/querysets/>‘_

URL:

/api/v3/environment/

GET Parameter:

search=[encoded dict]

Example:

/api/v3/environment/?search=[encoded dict]

Request body example:

{
"extends_search": [{

"divisao_dc": 1,
"ambiente_logico__nome": "AmbLog"

}],
"start_record": 0,
"custom_search": "",
"end_record": 25,
"asorting_cols": [],
"searchable_columns": []

}

• When “search” is used, “total” property is also retrieved.

Using fields GET parameter

Through fields, you can specify desired fields.

Example with field id:

fields=id

Example with fields id, name and grupo_l3:

fields=id,name,grupo_l3

7.3. Environment module 69

src Documentation, Release 3.4.2

Using kind GET parameter

The Environment module also accepts the kind GET parameter. Only two values are accepted by kind: basic or
details. For each value it has a set of default fields. The difference between them is that in general details contains
more fields than basic, and the common fields between them are more detailed for details.

Example with basic option:

kind=basic

Response body with basic kind:

{
"environments": [{

"id": <integer>,
"name": <string>

}]
}

Example with details option:

kind=details

Response body with details kind:

{
"environments": [{

"id": <integer>,
"name": <string>,
"grupo_l3": {

"id": <integer>,
"name": <string>

},
"ambiente_logico": {

"id": <integer>,
"name": <string>

},
"divisao_dc": {

"id": <integer>,
"name": <string>

},
"filter": <integer>,
"acl_path": <string>,
"ipv4_template": <string>,
"ipv6_template": <string>,
"link": <string>,
"min_num_vlan_1": <integer>,
"max_num_vlan_1": <integer>,
"min_num_vlan_2": <integer>,
"max_num_vlan_2": <integer>,
"default_vrf": {

"id": <integer>,
"internal_name": <string>,
"vrf": <string>

},
"father_environment": <recurrence-to:environment>

}]
}

70 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

Using fields and kind together

If fields is being used together kind, only the required fields will be retrieved instead of default.

Example with details kind and id field:

kind=details&fields=id

Default behavior without kind and fields

If neither kind nor fields are used in request, the response body will look like this:

Response body:

{
"environments": [{

"id": <integer>,
"name": <string>,
"grupo_l3": <integer>,
"ambiente_logico": <integer>,
"divisao_dc": <integer>,
"filter": <integer>,
"acl_path": <string>,
"ipv4_template": <string>,
"ipv6_template": <string>,
"link": <string>,
"min_num_vlan_1": <integer>,
"max_num_vlan_1": <integer>,
"min_num_vlan_2": <integer>,
"max_num_vlan_2": <integer>,
"default_vrf": <integer>,
"father_environment": <integer>

},...]
}

/api/v3/environment/environment-vip/

GET

Obtaining environments associated to environment vip

URL:

/api/v3/environment/environment-vip/<environment_vip_id>/

where environment_vip_id is the identifier of the environment vip used as an argument to retrieve associated environ-
ments. Only one environment_vip_id can be assigned. The instruction related to use of extra GET parameters (kind,
fields, include and exclude) and the default response body is the same as described in Environment GET Module

Example:

/api/v3/environment/environment-vip/1/

7.3. Environment module 71

src Documentation, Release 3.4.2

Environment Vip module

/api/v3/environment-vip/

GET

Obtaining list of Environment Vip

It is possible to specify in several ways fields desired to be retrieved in Environment Vip module through the use of
some GET parameters. You are not required to use these parameters, but depending on your needs it can make your
requests faster if you are dealing with many objects and you need few fields. The following fields are available for
Environment Vip module (hyperlinked or bold marked fields acts as foreign keys and can be expanded using __basic
or __details when using fields, include or exclude GET Parameters. Hyperlinked fields points to its documentation.
Some expandable fields that do not have documentation have its childs described here too because some of these childs
are also expandable):

• id

• finalidade_txt

• cliente_txt

• ambiente_p44_txt

• description

• name

• conf

• optionsvip

– option

– environment_vip

• environments

– environment

– environment_vip

Obtaining list of Environment Vip through id’s URL:

/api/v3/environment-vip/[environment_vip_ids]/

where environment_vip_ids are the identifiers of Environments Vip desired to be retrieved. It can use multiple id’s
separated by semicolons.

Example with Parameter IDs:

One ID:

/api/v3/environment-vip/1/

Many IDs:

/api/v3/environment-vip/1;3;8/

72 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

Obtaining list of Environment Vip through extended search More information about Django QuerySet API,
please see:

:ref:‘Django QuerySet API reference <https://docs.djangoproject.com/el/1.10/ref/models/querysets/>‘_

URL:

/api/v3/environment-vip/

GET Parameter:

search=[encoded dict]

Example:

/api/v3/environment-vip/?search=[encoded dict]

Request body example:

{
"extends_search": [{

"description__icontains": "BE",
}],
"start_record": 0,
"custom_search": "",
"end_record": 25,
"asorting_cols": [],
"searchable_columns": []

}

• When “search” is used, “total” property is also retrieved.

Using fields GET parameter

Through fields, you can specify desired fields.

Example with field id:

fields=id

Example with fields id, name and environments:

fields=id,name,environments

Using kind GET parameter

The Environment Vip module also accepts the kind GET parameter. Only two values are accepted by kind: basic or
details. For each value it has a set of default fields. The difference between them is that in general details contains
more fields than basic, and the common fields between them are more detailed for details.

Example with basic option:

kind=basic

Response body with basic kind:

{
"environments_vip": [{

"id": <integer>,

7.4. Environment Vip module 73

src Documentation, Release 3.4.2

"name": <string>
},...]

}

Example with details option:

kind=details

Response body with details kind:

{
"environments_vip": [{

"id": <integer>,
"finalidade_txt": <string>,
"cliente_txt": <string>,
"ambiente_p44_txt": <string>,
"description": <string>,
"name": <string>,
"conf": <string>

},...]
}

Using fields and kind together

If fields is being used together kind, only the required fields will be retrieved instead of default.

Example with details kind and id field:

kind=details&fields=id

Default behavior without kind and fields

If neither kind nor fields are used in request, the response body will look like this:

Response body:

{
"environments_vip": [{

"id": <integer>,
"finalidade_txt": <string>,
"cliente_txt": <string>,
"ambiente_p44_txt": <string>,
"description": <string>

},...]
}

/api/v3/environment-vip/step

GET

Obtaining finality list

URL:

74 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

/api/v3/environment-vip/step/

Optional GET Parameter:

environmentp44=[string]

Example:

Without environmentp44 GET Parameter:

/api/v3/environment-vip/step/

With environmentp44 GET Parameter:

/api/v3/environment-vip/step/?environmentp44=[string]

where environmentp44 is a characteristic of environment vips. This argument is not case sensitive. The URL above
accepts other GET Parameters, but the type of response will be different depending on what GET Parameters are
sent to API. Therefore, to obtain finality list, the URL should have no argument or have the optional environmentp44
argument. Don’t forget to encode URL.

Response body:

[
{

"finalidade_txt": <string>
},...

]

Obtaining client list through finality

URL:

/api/v3/environment-vip/step/

Required GET Parameter:

finality=[string]

Example:

/api/v3/environment-vip/step/?finality=[string]

where finality is a characteristic of environment vips. This argument is not case sensitive. The URL above accepts
other GET Parameters, but the type of response will be different depending on what GET Parameters are sent to API.
Therefore, to obtain client list ONLY pass finality parameter into URL. Don’t forget to encode URL.

Response body:

[
{

"cliente_txt": <string>
},...

]

Obtaining environment vip list through finality and client

URL:

7.4. Environment Vip module 75

src Documentation, Release 3.4.2

/api/v3/environment-vip/step/

Required GET Parameters:

finality=[string]
client=[string]

Example:

/api/v3/environment-vip/step/?finality=[string]&client=[string]

where finality and client are characteristics of environment vips. These arguments are not case sensitive. The URL
above accepts other GET Parameters, but the type of response will be different depending on what GET Parameters are
sent to API. Therefore, to obtain environment list ONLY pass finality and client parameters into URL. Don’t forget
to encode URL. The instruction related to use of extra GET parameters (kind, fields, include and exclude) and the
default response body is the same as described in Environment Vip GET Module.

Response body:

[
{

"id": <integer>,
"finalidade_txt": <string>,
"cliente_txt": <string>,
"ambiente_p44_txt": <string>,
"description": <string>

},...
]

Obtaining environment vip through finality, client and environmentp44

URL:

/api/v3/environment-vip/step/

Required GET Parameters:

finality=[string]
client=[string]
environmentp44=[string]

Example:

/api/v3/environment-vip/step/?finality=[string]&client=[string]&environmentp44=[string]

where finality, client and environmentp44 are characteristics of environment vips. These arguments are not case
sensitive . To obtain only one environment vip you must pass the three parameters described above into URL. Don’t
forget to encode URL. The instruction related to use of extra GET parameters (kind, fields, include and exclude) and
the default response body is the same as described in Environment Vip GET Module.

Response body:

[
{

"id": <integer>,
"finalidade_txt": <string>,
"cliente_txt": <string>,
"ambiente_p44_txt": <string>,
"description": <string>

76 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

},...
]

Equipment module

/api/v3/equipment/

GET

Obtaining list of Equipments

It is possible to specify in several ways fields desired to be retrieved in Equipment module through the use of some GET
parameters. You are not required to use these parameters, but depending on your needs it can make your requests faster
if you are dealing with many objects and you need few fields. The following fields are available for Equipment module
(hyperlinked or bold marked fields acts as foreign keys and can be expanded using __basic or __details when using
fields, include or exclude GET Parameters. Hyperlinked fields points to its documentation. Some expandable fields
that do not have documentation have its childs described here too because some of these childs are also expandable.):

• id

• name

• maintenance

• equipment_type

• model

– name

– brand

* id

* name

• ipv4

• ipv6

• environments

– environment

– equipment

• groups

Obtaining list of Equipments through some Optional GET Parameters URL:

/api/v3/equipment/

Optional GET Parameters:

rights_write=[string]
environment=[integer]
ipv4=[string]
ipv6=[string]

7.5. Equipment module 77

src Documentation, Release 3.4.2

is_router=[integer]
name=[string]

Where:

• rights_write must receive 1 if desired to obtain the equipments where at least one group to which the user
logged in is related has write access.

• environment is some environment identifier.

• ipv4 and ipv6 are IP’s must receive some valid IP Adresss.

• is_router must receive 1 if only router equipments are desired, 0 if only equipments that is not routers are
desired.

• name is a unique string that only one equipment has.

Example:

With environment and ipv4 GET Parameter:

/api/v3/equipment/?ipv4=192.168.0.1&environment=5

Obtaining list of Equipments through id’s URL:

/api/v3/equipment/[equipment_ids]/

where equipment_ids are the identifiers of Equipments desired to be retrieved. It can use multiple id’s separated by
semicolons.

Example with Parameter IDs:

One ID:

/api/v3/equipment/1/

Many IDs:

/api/v3/equipment/1;3;8/

Obtaining list of Equipments through extended search More information about Django QuerySet API, please
see:

:ref:‘Django QuerySet API reference <https://docs.djangoproject.com/el/1.10/ref/models/querysets/>‘_

URL:

/api/v3/equipment/

GET Parameter:

search=[encoded dict]

Example:

/api/v3/equipment/?search=[encoded dict]

Request body example:

78 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

{
"extends_search": [{

"maintenance": false,
"tipo_equipamento": 1

}],
"start_record": 0,
"custom_search": "",
"end_record": 25,
"asorting_cols": [],
"searchable_columns": []

}

• When “search” is used, “total” property is also retrieved.

Using fields GET parameter

Through fields, you can specify desired fields.

Example with field id:

fields=id

Example with fields id, name and maintenance:

fields=id,name,maintenance

Using kind GET parameter

The Equipment module also accepts the kind GET parameter. Only two values are accepted by kind: basic or details.
For each value it has a set of default fields. The difference between them is that in general details contains more fields
than basic, and the common fields between them are more detailed for details. For example, the field equipment_type
for basic will contain only the identifier and for details will contain also the description.

Example with basic option:

kind=basic

Response body with basic kind:

{
"equipments": [{

"id": <integer>,
"name": <string>

}]
}

Example with details option:

kind=details

Response body with details kind:

{
"equipments": [{

"id": <integer>,
"name": <string>,
"maintenance": <boolean>,
"equipment_type": {

7.5. Equipment module 79

src Documentation, Release 3.4.2

"id": <integer>,
"equipment_type": <string>

},
"model": {

"id": <integer>,
"name": <string>

},
"ipv4": [{

"id": <integer>,
"oct1": <integer>,
"oct2": <integer>,
"oct3": <integer>,
"oct4": <integer>,
"networkipv4": <integer>,
"description": <string>

},...],
"ipv6": [{

"id": <integer>,
"block1": <string>,
"block2": <string>,
"block3": <string>,
"block4": <string>,
"block5": <string>,
"block6": <string>,
"block7": <string>,
"block8": <string>,
"networkipv6": <integer>,
"description": <string>

},...],
"environments": [{

"is_router": <boolean>,
"environment": {

"id": <integer>,
"name": <name>
"grupo_l3": <integer>,
"ambiente_logico": <integer>,
"divisao_dc": <integer>,
"filter": <integer>,
"acl_path": <string>,
"ipv4_template": <string>,
"ipv6_template": <string>,
"link": <string>,
"min_num_vlan_1": <integer>,
"max_num_vlan_1": <integer>,
"min_num_vlan_2": <integer>,
"max_num_vlan_2": <integer>,
"vrf": <string>,
"default_vrf": <integer>

}
},...],
"groups": [{

"id": <integer>,
"name": <string>

},...]
},...]

}

80 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

Using fields and kind together

If fields is being used together kind, only the required fields will be retrieved instead of default.

Example with details kind and id field:

kind=details&fields=id

Default behavior without kind and fields

If neither kind nor fields are used in request, the response body will look like this:

Response body:

{
"equipments": [{

"id": <integer>,
"name": <string>,
"maintenance": <boolean>,
"equipment_type": <integer>,
"model": <integer>

},...]
}

POST

Creating list of equipments

URL:

/api/v3/equipment/

Request body:

{
"equipments": [{

"environments": [
{

"id": <integer:environment_fk>,
"is_router": <boolean>

},...
],
"equipment_type": <integer:equip_type_fk>,
"groups": [

{
"id": <integer:group_fk>

},...
],
"ipv4": [

{
"id": <integer:ipv4_fk>

}
],
"ipv6" [

{
"id": <integer:ipv6_fk>

7.5. Equipment module 81

src Documentation, Release 3.4.2

}
],
"maintenance": <boolean>,
"model": <integer:model_fk>,
"name": <string>

},...]
}

• environments - You can associate environments to new Equipment and specify if your equipment in each
association will act as a router for specific environment.

• equipment_type - You must specify if your Equipment is a Switch, a Router, a Load Balancer...

• groups - You can associate the new Equipment to one or more groups of Equipments.

• ipv4 - You can assign to the new Equipment how many IPv4 addresses is needed.

• ipv6 - You can assign to the new Equipment how many IPv6 addresses is needed.

• maintenance - You must assign to the new Equipment a flag saying if the Equipment is or not in maintenance
mode.

• model - You must assign to the Equipment some model (Cisco, Dell, HP, F5, ...).

• name - You must assign to the Equipment any name.

URL Example:

/api/v3/equipment/

PUT

Updating list of equipments in database

URL:

/api/v3/equipment/[equipment_ids]/

where equipment_ids are the identifiers of equipments. It can use multiple ids separated by semicolons.

Example with Parameter IDs:

One ID:

/api/v3/equipment/1/

Many IDs:

/api/v3/equipment/1;3;8/

Request body:

{
"equipments": [{

"id": <integer>,
"environments": [

{
"id": <integer:environment_fk>,
"is_router": <boolean>

},...
],

82 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

"equipment_type": <integer:equip_type_fk>,
"groups": [

{
"id": <integer:group_fk>

},...
],
"ipv4": [

{
"id": <integer:ipv4_fk>

}
],
"ipv6" [

{
"id": <integer:ipv6_fk>

}
],
"maintenance": <boolean>,
"model": <integer:model_fk>,
"name": <string>

},..]
}

• environments - You can associate environments to new Equipment and specify if your equipment in each
association will act as a router for specific environment.

• equipment_type - You must specify if your Equipment is a Switch, a Router, a Load Balancer...

• groups - You can associate the new Equipment to one or more groups of Equipments.

• ipv4 - You can assign to the new Equipment how many IPv4 addresses is needed.

• ipv6 - You can assign to the new Equipment how many IPv6 addresses is needed.

• maintenance - You must assign to the new Equipment a flag saying if the Equipment is or not in maintenance
mode.

• model - You must assign to the Equipment some model (Cisco, Dell, HP, F5, ...).

• name - You must assign to the Equipment any name.

Remember that if you don’t provide the not mandatory fields, actual information (e.g. associations between Equipment
and Environments) will be deleted. The effect of PUT Request is always to replace actual data by what you provide
into fields in this type of request.

URL Example:

/api/v3/equipment/1/

DELETE

Deleting a list of equipments in database

Deleting list of equipments and all relationships URL:

/api/v3/equipment/[equipment_ids]/

where equipment_ids are the identifiers of equipments desired to delete. It can use multiple id’s separated by semi-
colons. Doing this, all associations between Equipments and IP addresses, Access, Script (Roteiro), Interface, Envi-
ronment and Group will be deleted.

7.5. Equipment module 83

src Documentation, Release 3.4.2

Example with Parameter IDs:

One ID:

/api/v3/equipment/1/

Many IDs:

/api/v3/equipment/1;3;8/

Option Pool module

/api/v3/option-pool/environment

GET

Obtaining options pools associated to environment

URL:

/api/v3/option-pool/environment/<environment_id>/

where environment_id is the identifier of the environment used as an argument to retrieve associated option pools.
It’s mandatory to assign one and only one environment_id.

Example:

/api/v3/option-pool/environment/1/

Response body:

{
"options_pool": [{

"id": <integer>,
"type": "string",
"name": "string"

}, ...]
}

Option Vip module

/api/v3/option-vip/environment-vip

GET

Obtaining list of Options Vip

It is possible to specify in several ways fields desired to be retrieved in Options Vip module through the use of some
GET parameters. You are not required to use these parameters, but depending on your needs it can make your requests
faster if you are dealing with many objects and you need few fields. The following fields are available for Options Vip
module (hyperlinked or bold marked fields acts as foreign keys and can be expanded using __basic or __details when
using fields, include or exclude GET Parameters. Hyperlinked fields points to its documentation):

84 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

• option

• environment_vip

Obtaining options vip through environment vip URL:

/api/v3/option-vip/environment-vip/<environment_vip_id>

where environment_vip_id is the identifier of environment vip used as an argument to retrieve associated options vip.
It’s mandatory to assign one and only one identifier to environment_vip_id.

Example:

/api/v3/option-vip/environment-vip/1

Default Response body:

[
{

"option": {
"id": <integer>,
"tipo_opcao": <string>,
"nome_opcao_txt": <string>

},
"environment-vip": <integer>

},...
]

/api/v3/option-vip/environment-vip/type-option

GET

Obtaining options vip through environment vip and type option

URL:

/api/v3/option-vip/environment-vip/<environment_vip_id>/type-option/<type_option>/

where environment_vip_id is the identifier of environment vip used as an argument to retrieve associated options
vip and type_option is a string that filter the result by some type option. It’ mandatory to assign one and only one
identifier for environment_vip_id and a string for type_option. String type_option is not case sensitive.

It is possible to specify in several ways fields desired to be retrieved using the above route through the use of some
GET parameters. You are not required to use these parameters, but depending on your needs it can make your requests
faster if you are dealing with many objects and you need few fields. The following fields are available for its route
(hyperlinked or bold marked fields acts as foreign keys and can be expanded using __basic or __details when using
fields, include or exclude GET Parameters. Hyperlinked fields points to its documentation):

• id

• tipo_opcao

• nome_opcao_txt

Example:

/api/v3/option-vip/environment-vip/1/type-option/balanceamento/

7.7. Option Vip module 85

src Documentation, Release 3.4.2

Response body:

{

"optionsvip": [
[{

"id": <integer>,
"tipo_opcao": <string>,
"nome_opcao_txt": <string>

},...]
]

}

Using fields GET parameter

Through fields, you can specify desired fields.

Example with field id:

fields=id

Example with fields id and tipo_opcao:

fields=id,tipo_opcao

Using kind GET parameter

The above route also accepts the kind GET parameter. Only two values are accepted by kind: basic or details. For
each value it has a set of default fields. The difference between them is that in general details contains more fields than
basic, and the common fields between them are more detailed for details.

Example with basic option:

kind=basic

Response body with basic kind:

{
"optionsvip": [{

"id": <integer>,
"tipo_opcao": <string>

},...]
}

Example with details option:

kind=details

Response body with details kind:

{
"optionsvip": [{

"id": <integer>,
"tipo_opcao": <string>,
"nome_opcao_txt": <string>

},...]
}

86 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

Using fields and kind together

If fields is being used together kind, only the required fields will be retrieved instead of default.

Example with details kind and id field:

kind=details&fields=id

Default behavior without kind and fields

If neither kind nor fields are used in request, the response body will look like this:

Response body:

{
"optionsvip": [{

"id": <integer>,
"tipo_opcao": <string>

},...]
}

Server Pool module

/api/v3/pool/

GET

Obtaining list of Server Pool

It is possible to specify in several ways fields desired to be retrieved in Server Pool module through the use of some
GET parameters. You are not required to use these parameters, but depending on your needs it can make your requests
faster if you are dealing with many objects and you need few fields. The following fields are available for Server
Pool module (hyperlinked or bold marked fields acts as foreign keys and can be expanded using __basic or __details
when using fields, include or exclude GET Parameters. Hyperlinked fields points to its documentation. Some ex-
pandable fields that do not have documentation have its childs described here too because some of these childs are also
expandable.):

• id

• identifier

• default_port

• environment

• servicedownaction

• lb_method

• healthcheck

• default_limit

• server_pool_members

– id

7.8. Server Pool module 87

src Documentation, Release 3.4.2

– server_pool

– identifier

– ip

– ipv6

– priority

– weight

– limit

– port_real

– member_status

– last_status_update

– last_status_update_formated

– equipments

– equipment

• pool_created

• vips

• dscp

• groups_permissions

Obtaining list of Server Pools through id’s URL:

/api/v3/pool/<pool_ids>/

where pool_ids are the identifiers of each pool desired to be obtained. To obtain more than one pool, semicolons
between the identifiers should be used.

Example with Parameter IDs:

One ID:

/api/v3/pool/1/

Many IDs:

/api/v3/pool/1;3;8/

Obtaining list of Server Pools through extended search More information about Django QuerySet API, please
see:

:ref:‘Django QuerySet API reference <https://docs.djangoproject.com/el/1.10/ref/models/querysets/>‘_

URL:

/api/v3/pool/

GET Parameter:

search=[encoded dict]

88 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

Example:

/api/v3/pool/?search=[encoded dict]

Request body example:

{
"extends_search": [{

"environment": 1
}],
"start_record": 0,
"custom_search": "",
"end_record": 25,
"asorting_cols": [],
"searchable_columns": []

}

• When search is used, “total” property is also retrieved.

Using fields GET parameter

Through fields, you can specify desired fields.

Example with field id:

fields=id

Example with fields id, identifier and pool_created:

fields=id,identifier,pool_created

Using kind GET parameter

The Server Pool module also accepts the kind GET parameter. Only two values are accepted by kind: basic or details.
For each value it has a set of default fields. The difference between them is that in general details contains more fields
than basic, and the common fields between them are more detailed for details.

Example with basic option:

kind=basic

Response body with basic kind:

{
"server_pools": [{

"id": <integer>,
"identifier": <string>,
"pool_created": <boolean>

},...]
}

Example with details option:

kind=details

Response body with details kind:

7.8. Server Pool module 89

src Documentation, Release 3.4.2

{
"server_pools": [{

"id": <integer>,
"identifier": <string>,
"default_port": <integer>,
"environment": {

"id": <integer>,
"name": <string>

},
"servicedownaction": {

"id": <integer>,
"type": <string>,
"name": <string>

},
"lb_method": <string>,
"healthcheck": {

"identifier": <string>,
"healthcheck_type": <string>,
"healthcheck_request": <string>,
"healthcheck_expect": <string>,
"destination": <string>

},
"default_limit": <integer>,
"server_pool_members": [{

"id": <integer>,
"identifier": <string>,
"ip": {

"id": <integer>,
"ip_formated": <string>

},
"ipv6": {

"id": <integer>,
"ip_formated": <string>

},
"priority": <integer>,
"weight": <integer>,
"limit": <integer>,
"port_real": <integer>,
"member_status": <integer>,
"last_status_update_formated": <string>,
"equipment": {

"id": <integer>,
"name": <string>

}
}],
"pool_created": <boolean>

}]
}

Using fields and kind together

If fields is being used together kind, only the required fields will be retrieved instead of default.

Example with details kind and id field:

kind=details&fields=id

90 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

Default behavior without kind and fields

If neither kind nor fields are used in request, the response body will look like this:

{
"server_pools": [{

"id": <server_pool_id>,
"identifier": <string>,
"default_port": <integer>,
environmentvip": <environment_id>,
"servicedownaction": {

"id": <optionvip_id>,
"name": <string>

},
"lb_method": <string>,
"healthcheck": {

"identifier": <string>,
"healthcheck_type": <string>,
"healthcheck_request": <string>,
"healthcheck_expect": <string>,
"destination": <string>

},
"default_limit": <integer>,
"server_pool_members": [{

"id": <server_pool_member_id>,
"identifier": <string>,
"ipv6": {

"ip_formated": <ipv6_formated>,
"id": <ipv6_id>

},
"ip": {

"ip_formated": <ipv4_formated>,
"id": <ipv4_id>

},
"priority": <integer>,
"equipment": {

"id": <integer>,
"name": <string>

},
"weight": <integer>,
"limit": <integer>,
"port_real": <integer>,
"last_status_update_formated": <string>,
"member_status": <integer>

},...],
"pool_created": <boolean>

},...]
}

POST

Creating list of pools in database:

This only affects database, if flag “created” is assigned true, it will be ignored.

URL:

7.8. Server Pool module 91

src Documentation, Release 3.4.2

/api/v3/pool/

Request body:

{
"server_pools": [{

"id": <null>,
"identifier": <string>,
"default_port": <integer>,
"environmentvip": <environment_id>,
"servicedownaction": {

"id": <optionvip_id>,
"name": <string>

},
"lb_method": <string>,
"healthcheck": {

"identifier": <string>,
"healthcheck_type": <string>,
"healthcheck_request": <string>,
"healthcheck_expect": <string>,
"destination": <string>

},
"default_limit": <integer>,
"server_pool_members": [{

"id": <server_pool_member_id>,
"identifier": <string>,
"ipv6": {

"ip_formated": <ipv6_formated>,
"id": <ipv6_id>

},
"ip": {

"ip_formated": <ipv4_formated>,
"id": <ipv4_id>

},
"priority": <integer>,
"equipment": {

"id": <integer>,
"name": <string>

},
"weight": <integer>,
"limit": <integer>,
"port_real": <integer>,
"last_status_update_formated": <string>,
"member_status": <integer>

}],
"pool_created": <boolean>

},...]
}

URL Example:

/api/v3/pool/

More information about the POST request can be obtained in:

/api/v3/help/pool_post/

92 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

PUT

Updating list of server pools in database

URL:

/api/v3/pool/<pool_ids>

where pool_ids are the identifiers of each pool desired to be updated. Only pools not deployed to equipments can be
updated in this way. To update more than one pool, semicolons between the identifiers should be used.

Example with Parameter IDs:

One ID:

/api/v3/pool/1/

Many IDs:

/api/v3/pool/1;3;8/

Request body:

{
"server_pools": [{

"id": <server_pool_id>,
"identifier": <string>,
"default_port": <integer>,
environmentvip": <environment_id>,
"servicedownaction": {

"id": <optionvip_id>,
"name": <string>

},
"lb_method": <string>,
"healthcheck": {

"identifier": <string>,
"healthcheck_type": <string>,
"healthcheck_request": <string>,
"healthcheck_expect": <string>,
"destination": <string>

},
"default_limit": <integer>,
"server_pool_members": [{

"id": <server_pool_member_id>,
"identifier": <string>,
"ipv6": {

"ip_formated": <ipv6_formated>,
"id": <ipv6_id>

},
"ip": {

"ip_formated": <ipv4_formated>,
"id": <ipv4_id>

},
"priority": <integer>,
"equipment": {

"id": <integer>,
"name": <string>

},
"weight": <integer>,
"limit": <integer>,

7.8. Server Pool module 93

src Documentation, Release 3.4.2

"port_real": <integer>,
"last_status_update_formated": <string>,
"member_status": <integer>

}],
"pool_created": <boolean>

},...]
}

More information about the PUT request can be obtained in:

/api/v3/help/pool_put/

DELETE

Deleting a list of server pools in database

URL:

/api/v3/pool/<pool_ids>/

where pool_ids are the identifiers of each pool desired to be deleted. To delete more than one pool, semicolons
between the identifiers should be used. If at least one pool assigned to pool_ids exists in equipment, an exception will
be raised.

Example with Parameter IDs:

One ID:

/api/v3/pool/1/

Many IDs:

/api/v3/pool/1;3;8/

/api/v3/pool/deploy

GET

Obtaining list of pools with member states updated

URL:

/api/v3/pool/deploy/<pool_ids>/member/status/

where pool_ids are the identifiers of each pool desired to be obtained. To obtain more than one pool, semicolons
between the identifiers should be used.

GET Param:

checkstatus=[0|1]

To obtain member states updated, checkstatus should be assigned to 1. If it is assigned to 0, server pools will be
retrieved but the real status of the equipments will not be checked in the equipment.

Response body:

94 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

{
"server_pools": [{

"id": <server_pool_id>,
"identifier": <string>,
"default_port": <integer>,
environmentvip": <environment_id>,
"servicedownaction": {

"id": <optionvip_id>,
"name": <string>

},
"lb_method": <string>,
"healthcheck": {

"identifier": <string>,
"healthcheck_type": <string>,
"healthcheck_request": <string>,
"healthcheck_expect": <string>,
"destination": <string>

},
"default_limit": <integer>,
"server_pool_members": [{

"id": <server_pool_member_id>,
"identifier": <string>,
"ipv6": {

"ip_formated": <ipv6_formated>,
"id": <ipv6_id>

},
"ip": {

"ip_formated": <ipv4_formated>,
"id": <ipv4_id>

},
"priority": <integer>,
"equipment": {

"id": <integer>,
"name": <string>

},
"weight": <integer>,
"limit": <integer>,
"port_real": <integer>,
"last_status_update_formated": <string>,
"member_status": <integer>

}],
"pool_created": <boolean>

},...]
}

Pool Member

• member_status in “server_pool_members must receive a octal numeric value (0 to 7). This value will be
converted into binary format with each bit representing one status. On PUT, most significant bit (2^2) will be
ignored because it’s read-only in the equipments.

• member_status binary format: NNN where N is 0 or 1.

– First bit (2^0):

* User up - 1 - new connections allowed, check second bit

* User down - 0 - allow existing connections to time out, but no new connections are allowed,
ignore second bit

7.8. Server Pool module 95

src Documentation, Release 3.4.2

– Second bit (2^1):

* Enabled member - 1 - new connections allowed

* Disabled member - 0 - member only process persistent and active connections

– Third bit (read-only)(2^2):

* Healthcheck status is up - 1 - new connections allowed

* Healthcheck status is down - 0 - no new connections are send in this state

POST

Creating list of pools in equipments

URL:

/api/v3/pool/deploy/<pool_ids>/

where pool_ids are the identifiers of each pool desired to be deployed. These pools must exist in database. To deploy
more than one pool, semicolons between the identifiers should be used.

Example with Parameter IDs:

One ID:

/api/v3/pool/1/

Many IDs:

/api/v3/pool/1;3;8/

PUT

Enabling/Disabling pool member by list of server pool

URL:

/api/v3/pool/deploy/<pool_ids>/member/status/

where pool_ids are the identifiers of each pool desired to be updated. To update more than one pool, semicolons
between the identifiers should be used.

Example with Parameter IDs:

One ID:

/api/v3/pool/deploy/1/member/status/

Many IDs:

/api/v3/pool/deploy/1;3;8/member/status/

Request body:

{
"server_pools": [{

"id": <server_pool_id>,
"server_pool_members": [{

96 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

"id": <server_pool_member_id>,
"member_status": <integer>

}]
},...]

}

More information about the PUT request can be obtained in:

/api/v3/help/pool_put/

Updating pools by list in equipments

URL:

/api/v3/pool/deploy/<pool_ids>/

Request body:

{
"server_pools": [{

"id": <server_pool_id>,
"identifier": <string>,
"default_port": <integer>,
environmentvip": <environment_id>,
"servicedownaction": {

"id": <optionvip_id>,
"name": <string>

},
"lb_method": <string>,
"healthcheck": {

"identifier": <string>,
"healthcheck_type": <string>,
"healthcheck_request": <string>,
"healthcheck_expect": <string>,
"destination": <string>

},
"default_limit": <integer>,
"server_pool_members": [{

"id": <server_pool_member_id>,
"identifier": <string>,
"ipv6": {

"ip_formated": <ipv6_formated>,
"id": <ipv6_id>

},
"ip": {

"ip_formated": <ipv4_formated>,
"id": <ipv4_id>

},
"priority": <integer>,
"equipment": {

"id": <integer>,
"name": <string>

},
"weight": <integer>,
"limit": <integer>,
"port_real": <integer>,
"last_status_update_formated": <string>,

7.8. Server Pool module 97

src Documentation, Release 3.4.2

"member_status": <integer>
}],
"pool_created": <boolean>

},...]
}

URL Example:

/api/v3/pool/

More information about the PUT request can be obtained in:

/api/v3/help/pool_put/

DELETE

Deleting a list of server pools in equipments

URL:

/api/v3/pool/deploy/<pool_ids>/

where pool_ids are the identifiers of each pool desired to be deleted only in equipment. In database these server pools
will not be deleted, but only flag “created” of each server pool will be changed to “false”. To delete more than one
pool in equipment, semicolons between the identifiers should be used.

Example with Parameter IDs:

One ID:

/api/v3/pool/deploy/1/

Many IDs:

/api/v3/pool/deploy/1;3;8/

/api/v3/pool/details

GET

Obtaining server pools with some more details through id’s

URL:

/api/v3/pool/details/<pool_ids>/

where pool_ids are the identifiers of each pool desired to be obtained. To obtain more than one pool, semicolons
between the identifiers should be used.

Example with Parameter IDs:

One ID:

/api/v3/pool/details/1/

Many IDs:

98 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

/api/v3/pool/details/1;3;8/

Response body:

{
"server_pools": [{

"id": <server_pool_id>,
"identifier": <string>,
"default_port": <integer>,
"environmentvip": {

"id": <environment_id>,
"finalidade_txt": <string>,
"cliente_txt": <string>,
"ambiente_p44_txt": <string>,
"description": <string>

}
"servicedownaction": {

"id": <optionvip_id>,
"name": <string>

},
"lb_method": <string>,
"healthcheck": {

"identifier": <string>,
"healthcheck_type": <string>,
"healthcheck_request": <string>,
"healthcheck_expect": <string>,
"destination": <string>

},
"default_limit": <integer>,
"server_pool_members": [{

"id": <server_pool_member_id>,
"identifier": <string>,
"ipv6": {

"ip_formated": <ipv6_formated>,
"id": <ipv6_id>

},
"ip": {

"ip_formated": <ipv4_formated>,
"id": <ipv4_id>

},
"priority": <integer>,
"equipment": {

"id": <integer>,
"name": <string>

},
"weight": <integer>,
"limit": <integer>,
"port_real": <integer>,
"last_status_update_formated": <string>,
"member_status": <integer>

}],
"pool_created": <boolean>

},...]
}

7.8. Server Pool module 99

src Documentation, Release 3.4.2

Obtaining server pools with some more details through extended search

URL:

/api/v3/pool/details/

GET Parameter:

search=[encoded dict]

Example:

/api/v3/pool/details/?search=[dict encoded]

Request body:

{
’extends_search’: [{

’environment’: <environment_id>
}],
’start_record’: <integer>,
’custom_search’: ’<string>’,
’end_record’: <integer>,
’asorting_cols’: [<string>,..],
’searchable_columns’: [<string>,..]

}

Request body example:

{
’extends_search’: [{

’environment’: 1
}],
’start_record’: 0,
’custom_search’: ’pool_123’,
’end_record’: 25,
’asorting_cols’: [’identifier’],
’searchable_columns’: [

’identifier’,
’default_port’,
’pool_created’,
’healthcheck__healthcheck_type’

]
}

Response body:

{
"total": <integer>,
"server_pools": [...]

}

/api/v3/pool/environment-vip

GET

100 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

Obtaining server pools associated to environment vips

URL:

/api/v3/pool/environment-vip/<environment_vip_id>/

where environment_vip_id is the identifier of the environment vip used as an argument to retrieve associated server
pools. It’s mandatory to assign one and only one identifier to environment_vip_id. The instruction related to use of
extra GET parameters (kind, fields, include and exclude) and the default response body is the same as described in
Server Pool GET Module. The only difference is that fields GET parameter is always initialized by default with ‘id’
and ‘identifier’ fields.

Example:

/api/v3/pool/environment-vip/1/

/api/v3/pool/deploy/async/

POST

Deploying list of Server Pool asynchronously

URL:

/api/v3/pool/deploy/async/[pool_ids]/

You can also deploy Server Pool objects asynchronously. It is only necessary to provide the same as in the respective
synchronous request, where pool_ids are the identifiers of Server Pool objects desired to be deployed separated by
commas. In this case, when you make request NetworkAPI will create a task to fullfil it. You will not receive
the identifier of each Server Pool desired to be deployed in response, but for each Server Pool you will receive an
identifier for the created task. Since this is an asynchronous request, it may be that Server Pool objects be deployed
after you receive the response. It is your task, therefore, to consult the API through the available means to verify that
your request have been met.

URL Example with one identifier:

/api/v3/pool/deploy/async/

URL Example with one identifier:

/api/v3/pool/deploy/async/1;3;8/

Response body:

[
{

"task_id": [string with 36 characters]
},...

]

Response Example for Deploying two Server Pool objects:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

7.8. Server Pool module 101

src Documentation, Release 3.4.2

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"
}

]

PUT

Updating and Redeploying list of Server Pool asynchronously

URL:

/api/v3/pool/deploy/async/[pool_ids]/

You can also update and redeploy Server Pool objects asynchronously. It is only necessary to provide the same as in
the respective synchronous request (For more information about request body please check Synchronous Server Pool
Update and Redeploy). In this case, when you make request NetworkAPI will create a task to fullfil it. You will not
receive the identifier of each Server Pool desired to be updated and redeployed in response, but for each Server Pool
you will receive an identifier for the created task. Since this is an asynchronous request, it may be that Server Pool
objects be updated and redeployed after you receive the response. It is your task, therefore, to consult the API through
the available means to verify that your request have been met.

URL Example:

/api/v3/pool/deploy/async/[pool_ids]/

Response body:

[
{

"task_id": [string with 36 characters]
},...

]

Response Example for Updating and Redeploying two Server Pool objects:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"
}

]

DELETE

Undeploying list of Server Pool asynchronously

URL:

/api/v3/pool/deploy/async/[pool_ids]/

You can also undeploy Server Pool objects asynchronously. It is only necessary to provide the same as in the respective
synchronous request, where pool_ids are the identifiers of Server Pool objects desired to be undeployed separated by
commas. In this case, when you make request NetworkAPI will create a task to fullfil it. You will not receive the
identifier of each Server Pool desired to be undeployed in response, but for each Server Pool you will receive an

102 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

identifier for the created task. Since this is an asynchronous request, it may be that Server Pool objects be undeployed
after you receive the response. It is your task, therefore, to consult the API through the available means to verify that
your request have been met.

URL Example with one identifier:

/api/v3/pool/deploy/async/

URL Example with one identifier:

/api/v3/pool/deploy/async/1;3;8/

Response body:

[
{

"task_id": [string with 36 characters]
},...

]

Response Example for Undeploying two Server Pool objects:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"
}

]

Type Option module

/api/v3/type-option/environment-vip

GET

Obtaining options vip through environment vip and type option

URL:

/api/v3/type-option/environment-vip/<environment_vip_id>/

where environment_vip_id are the identifiers of environment vips used as an argument to retrieve associated type
options. It can use multiple id’s separated by semicolons.

Example:

/api/v3/type-option/environment-vip/1/

Response body:

[
[

<string>,...
],...

]

7.9. Type Option module 103

src Documentation, Release 3.4.2

Vip Request module

/api/v3/vip-request/

GET

Obtaining list of Vip Request

It is possible to specify in several ways fields desired to be retrieved in Vip Request module through the use of some
GET parameters. You are not required to use these parameters, but depending on your needs it can make your requests
faster if you are dealing with many objects and you need few fields. The following fields are available for Vip Request
module (hyperlinked or bold marked fields acts as foreign keys and can be expanded using __basic or __details when
using fields, include or exclude GET Parameters. Hyperlinked fields points to its documentation):

• id

• name

• service

• business

• environmentvip

• ipv4

• ipv6

• equipments

• default_names

• dscp

• ports

• options

• groups_permissions

• created

Where:

• “environmentvip” attribute is an integer that identifies the environment vip associated to the retrieved vip
request.

• “options” are the configured options vip associated to the retrieved vip request.

– cache-group, persistence, timeout and traffic_return are some values present in the database. These
values are configured to a set of restricted values.

• “ports” are the configured ports associated to the retrieved vip request.

– l4_protocol and l7_protocol in options and l7_rule in pools work as well as the values present in
“options” discussed above.

– “server_pool” is the identifier of the server-pool port associated to the retrieved vip request.

104 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

Obtaining list of Vip Request through id’s URL:

/api/v3/vip-request/[vip_request_ids]/

where vip_request_ids are the identifiers of vip requests desired to be retrieved. It can use multiple id’s separated by
semicolons.

Example with Parameter IDs:

One ID:

/api/v3/vip-request/1/

Many IDs:

/api/v3/vip-request/1;3;8/

Obtaining list of Vip Request through extended search Extended search permits a search with multiple options,
according with user desires. The following two examples are shown to demonstrate how easy is to use this resource. In
the first example, extended-search attribute receives an array with two dicts where the expected result is a list of vip
requests where the ipv4 “192.168.x.x” are created or the ipv4 “x.168.17.x” are not created in each associated server
pools. Remember that an OR operation is made to each element in an array and an AND operation is made to each
element in a dict. An array can be a value associated to some key into a dict as well as a dict can be an element of an
array.

In the second example, extended-search attribute receives an array with only one dict where the expected result is a
list of vip requests where the ipv4 “192.x.x.x” are created on each associated server pools and the name of each virtual
lan associated with each ipv4 contains the word “G1”. This is one of many possibilities offered by Django QuerySet
API. Due to use of icontains, the search of “G1” is not case sensitive.

More information about Django QuerySet API, please see:

:ref:‘Django QuerySet API reference <https://docs.djangoproject.com/el/1.10/ref/models/querysets/>‘_

URL:

/api/v3/vip-request/

GET Parameter:

search=[encoded dict]

Example:

/api/v3/vip-request/?search=[encoded dict]

First request body example:

{
"extends_search": [{

"ipv4__oct1": "192",
"ipv4__oct2": "168",
"created": true
},

{
"ipv4__oct2": "168",
"ipv4__oct3": "17",
"created": false

}],
"start_record": 0,

7.10. Vip Request module 105

src Documentation, Release 3.4.2

"custom_search": "",
"end_record": 25,
"asorting_cols": [],
"searchable_columns": []

}

Second request body example:

{
"extends_search": [{

"ipv4__vlan__nome__icontains": "G1",
"ipv4__oct1": "192",
"created": true
}

],
"start_record": 0,
"custom_search": "",
"end_record": 25,
"asorting_cols": [],
"searchable_columns": []

}

URL encoded for first request body example:

/api/v3/vip-request/?search=%22%7B+++++%22extends_search%22%3A+%5B%7B+++++++++%22ipv4__oct1%22%3A+%22192%22%2C+++++++++%22ipv4__oct2%22%3A+%22168%22%2C+++++++++%22created%22%3A+true+++++++++%7D%2C+++++%7B+++++++++%22ipv4__oct2%22%3A+%22168%22%2C+++++++++%22ipv4__oct3%22%3A+%2217%22%2C+++++++++%22created%22%3A+false+++++%7D%5D%2C+++++%22start_record%22%3A+0%2C+++++%22custom_search%22%3A+%22%22%2C+++++%22end_record%22%3A+25%2C+++++%22asorting_cols%22%3A+%5B%5D%2C+++++%22searchable_columns%22%3A+%5B%5D+%7D%22

URL encoded for second request body example:

/api/v3/vip-request/?search=%7B+++++++++%22extends_search%22%3A+%5B%7B+++++++++++++%22ipv4__vlan__nome__icontains%22%3A+%22TVGLOBO%22+%2C+++++++++++++%22ipv4__oct1%22%3A+%22192%22%2C+++++++++++++%22created%22%3A+true+++++++++++++%7D%2C+++++++++%7B+++++++++++++%22ipv4__vlan_nome__icontains%22%3A+%22G1%22%2C+++++++++++++%22ipv4__oct2%22%3A+%22168%22%2C+++++++++++++%22created%22%3A+false+++++++++%7D%5D%2C+++++++++%22start_record%22%3A+0%2C+++++++++%22custom_search%22%3A+%22%22%2C+++++++++%22end_record%22%3A+25%2C+++++++++%22asorting_cols%22%3A+%5B%5D%2C+++++++++%22searchable_columns%22%3A+%5B%5D+++++%7D

• When “search” is used, “total” property is also retrieved.

Using fields GET parameter

Through fields, you can specify desired fields.

Example with field id:

fields=id

Example with fields id, name and created:

fields=id,name,created

Using kind GET parameter

The Vip Request module also accepts the kind GET parameter. Only two values are accepted by kind: basic or details.
For each value it has a set of default fields. The difference between them is that in general details contains more fields
than basic, and the common fields between them are more detailed for details. For example, the field ipv4 for basic
will contain only the identifier and for details will contain name, the ip formated and description.

Example with basic option:

kind=basic

Response body with basic kind:

106 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

{
"vips": [{

"id": <integer>,
"name": <string>,
"ipv4": <integer>,
"ipv6": <integer>

}]
}

Example with details option:

kind=details

Response body with details kind:

{
"vips": [{

"id": <integer>,
"name": <string>,
"service": <string>,
"business": <string>,
"environmentvip": {

"id": <integer>,
"finalidade_txt": <string>,
"cliente_txt": <string>,
"ambiente_p44_txt": <string>,
"description": <string>

},
"ipv4": {

"id": <integer>,
"ip_formated": <string>,
"description": <string>

},
"ipv6": {

"id": <integer>,
"ip_formated": <string>,
"description": <string>

},
"equipments": [{

"id": <integer>,
"name": <string>,
"maintenance": <boolean>,
"equipment_type": {

"id": <integer>,
"equipment_type": <string>

},
"model": {

"id": <integer>,
"name": <string>

}
},...],
"default_names": [

<string>,...
],
"dscp": <integer>,
"ports": [{

"id": <integer>,
"port": <integer>,
"options": {

7.10. Vip Request module 107

src Documentation, Release 3.4.2

"l4_protocol": {
"id": <integer>,
"tipo_opcao": <string>,
"nome_opcao_txt": <string>

},
"l7_protocol": {

"id": <integer>,
"tipo_opcao": <string>,
"nome_opcao_txt": <string>

}
},
"pools": [{

"id": <integer>,
"server_pool": {

"id": <integer>,
"identifier": <string>,
"default_port": <integer>,
"environment": {

"id": <integer>,
"name": <string>

},
"servicedownaction": {

"id": <integer>,
"type": <string>,
"name": <string>

},
"lb_method": <string>,
"healthcheck": {

"identifier": <string>,
"healthcheck_type": <string>,
"healthcheck_request": <string>,
"healthcheck_expect": <string>,
"destination": <string>

},
"default_limit": <integer>,
"server_pool_members": [{

"id": <integer>,
"server_pool": <integer>,
"identifier": <string>,
"ip": {

"id": <integer>,
"ip_formated": <string>

},
"ipv6": {

"id": <integer>,
"ip_formated": <string>

},
"priority": <integer>,
"weight": <integer>,
"limit": <integer>,
"port_real": <integer>,
"member_status": <integer>,
"last_status_update_formated": <string>,
"equipment": {

"id": <integer>,
"name": <string>

}
},...],

108 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

"pool_created": <boolean>
},
"l7_rule": {

"id": <integer>,
"tipo_opcao": <string>,
"nome_opcao_txt": <string>

},
"l7_value": <integer>,
"order": <integer>

}]
},...],
"options": {

"cache_group": {
"id": <integer>,
"tipo_opcao": <string>,
"nome_opcao_txt": <string>

},
"traffic_return": {

"id": <integer>,
"tipo_opcao": <string>,
"nome_opcao_txt": <string>

},
"timeout": {

"id": <integer>,
"tipo_opcao": <string>,
"nome_opcao_txt": <string>

},
"persistence": {

"id": <integer>,
"tipo_opcao": <string>,
"nome_opcao_txt": <string>

}
},
"groups_permissions": [{

"group": {
"id": <integer>,
"name": <string>

},
"read": <boolean>,
"write": <boolean>,
"change_config": <boolean>,
"delete": <boolean>

},...],
"created": <boolean>

},...]
}

Using fields and kind together

If fields is being used together kind, only the required fields will be retrieved instead of default.

Example with details kind and id field:

kind=details&fields=id

7.10. Vip Request module 109

src Documentation, Release 3.4.2

Default behavior without kind and fields

If neither kind nor fields are used in request, the response body will look like this:

{
"vips": [{

"id": <integer>,
"name": <string>,
"service": <string>,
"business": <string>,
"environmentvip": <integer>,
"ipv4": <integer>,
"ipv6": <integer>,
"ports": [{

"id": <integer>,
"port": <integer>,
"options": {

"l4_protocol": <integer>,
"l7_protocol": <integer>

},
"pools": [{

"id": integer,
"server_pool": <integer>,
"l7_rule": <integer>,
"l7_value": <integer>,
"order": <integer>

}, ...]
}, ...],
"options": {

"cache_group": <integer>,
"traffic_return": <integer>,
"timeout": <integer>,
"persistence": <integer>

},
"created": <boolean>

},...]
}

POST

Creating list of vip request

URL:

/api/v3/vip-request/

Request body:

{
"vips": [{

"business": [string],
"created": [boolean],
"environmentvip": [environmentvip_id],
"id": [null],
"ipv4": [ipv4_id],
"ipv6": [ipv6_id],
"name": [string],

110 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

"options": {
"cache_group": [optionvip_id],
"persistence": [optionvip_id],
"timeout": [optionvip_id],
"traffic_return": [optionvip_id]

},
"ports": [{

"id": [vip_port_id],
"options": {

"l4_protocol": [optionvip_id],
"l7_protocol": [optionvip_id]

},
"pools": [{

"l7_rule": [optionvip_id],
"l7_value": [string],
"order": [integer],
"server_pool": [server_pool_id]

},..],
"port": [integer]
},..],

"service": [string]
},..]

}

• “environmentvip” attribute is an integer that identifies the environment vip that is desired to associate to the
new vip request.

• “options” are the configured options vip that is desired to associate to the new vip request.

– cache-group, persistence, timeout and traffic_return are some values present in the database. These
values are configured to a set of restricted values.

• “ports” are the configured ports that is desired to asssociate to the new vip request.

– l4_protocol and l7_protocol in options and l7_rule in pools work as well as the values present in
“options” discussed above.

– “server_pool” is the identifier of the server-pool port associated to the new vip request.

URL Example:

/api/v3/vip-request/

More information about the POST request can be obtained in:

/api/v3/help/vip_request_post/

PUT

Updating list of vip request in database

URL:

/api/v3/vip-request/[vip_request_ids]/

where vip_request_ids are the identifiers of vip requests. It can use multiple ids separated by semicolons.

Example with Parameter IDs:

One ID:

7.10. Vip Request module 111

src Documentation, Release 3.4.2

/api/v3/vip-request/1/

Many IDs:

/api/v3/vip-request/1;3;8/

Request body:

{
"vips": [{

"business": [string],
"created": [boolean],
"environmentvip": [environmentvip_id],
"id": [vip_id],
"ipv4": [ipv4_id],
"ipv6": [ipv6_id],
"name": [string],
"options": {

"cache_group": [optionvip_id],
"persistence": [optionvip_id],
"timeout": [optionvip_id],
"traffic_return": [optionvip_id]

},
"ports": [{

"id": [vip_port_id],
"options": {

"l4_protocol": [optionvip_id],
"l7_protocol": [optionvip_id]

},
"pools": [{

"l7_rule": [optionvip_id],
"l7_value": [string],
"order": [integer],
"server_pool": [server_pool_id]

},..],
"port": [integer]
},..],

"service": [string]
},..]

}

• “environmentvip” attribute is an integer that identifies the environment vip that is desired to associate to the
existent vip request.

• “options” are the configured options vip that is desired to associate to the existent vip request.

– cache-group, persistence, timeout and traffic_return are some values present in the database. These
values are configured to a set of restricted values.

• “ports” are the configured ports that is desired to asssociate to the existent vip request.

– l4_protocol and l7_protocol in options and l7_rule in pools work as well as the values present in
“options” discussed above.

– “server_pool” is the identifier of the server-pool port associated to the existent vip request.

URL Example:

/api/v3/vip-request/1/

More information about the PUT request can be obtained in:

112 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

/api/v3/help/vip_request_put/

DELETE

Deleting a list of vip request in database

Deleting list of vip-request and associated IP’s URL:

/api/v3/vip-request/[vip_request_ids]/

where vip_request_ids are the identifiers of vip requests desired to delete. It can use multiple id’s separated by
semicolons. Doing this, the IP associated with each server pool desired to be deleted will also be deleted if this IP is
not associated with any other vip request not contained in list of vip request that the user want to delete.

Example with Parameter IDs:

One ID:

/api/v3/vip-request/1/

Many IDs:

/api/v3/vip-request/1;3;8/

Deleting list of vip-request keeping associated IP’s If desired to delete some vip-request keeping it’s associated
IP’s, you must use an additional parameter in URL.

GET Param:

keepip=[0|1]

where:

• 1 - Keep IP in database

• 0 - Delete IP in database when it hasn’t other relationship (the same as not use keepip parameter)

URL Examples:

/api/v3/vip-request/1/

With keepip parameter assigned to 1:

/api/v3/vip-request/1/?keepip=1

/api/v3/vip-request/deploy/

POST

Deploying list of vip request in equipments

URL:

/api/v3/vip-request/deploy/[vip_request_ids]/

7.10. Vip Request module 113

src Documentation, Release 3.4.2

where vip_request_ids are the identifiers of vip requests desired to be deployed. These selected vip requests must
exist in the database. vip_request_ids can also be assigned to multiple id’s separated by semicolons.

Examples:

One ID:

/api/v3/vip-request/deploy/1/

Many IDs:

/api/v3/vip-request/deploy/1;3;8/

PUT

Updating list of vip requests in equipments

URL:

/api/v3/vip-request/deploy/[vip_request_ids]

where vip_request_ids are the identifiers of vip requests desired to be updated. It can use multiple ids separated by
semicolons.

Request body:

{
"vips": [{

"business": <string>,
"created": <boolean>,
"environmentvip": <environmentvip_id>,
"id": <vip_id>,
"ipv4": <ipv4_id>,
"ipv6": <ipv6_id>,
"name": <string>,
"options": {

"cache_group": <optionvip_id>,
"persistence": <optionvip_id>,
"timeout": <optionvip_id>,
"traffic_return": <optionvip_id>

},
"ports": [{

"id": <vip_port_id>,
"options": {

"l4_protocol": <optionvip_id>,
"l7_protocol": <optionvip_id>

},
"pools": [{

"l7_rule": <optionvip_id>,
"l7_value": <string>,
"server_pool": <server_pool_id>

},..],
"port": <integer>
},..],

"service": <string>
},..]

}

114 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

• “environmentvip” attribute is an integer that identifies the environment vip that is desired to associate to the
existent vip request.

• “options” are the configured options vip that is desired to associate to the existent vip request.

– cache-group, persistence, timeout and traffic_return are some values present in the database. These
values are configured to a set of restricted values.

• “ports” are the configured ports that is desired to asssociate to the existent vip request.

– l4_protocol and l7_protocol in options and l7_rule in pools work as well as the values present in
“options” discussed above.

– “server_pool” is the identifier of the server-pool port associated to the existent vip request.

URL Example:

/api/v3/vip-request/1;3;8/

More information about the PUT request can be obtained in:

/api/v3/help/vip_request_put/

DELETE

Deleting list of vip requests in equipments

URL:

/api/v3/vip-request/deploy/[vip_request_ids]/

where vip_request_ids are the identifiers of vip requests desired to be deleted. It can use multiple id’s separated by
semicolons. Doing this, the IP associated with each server pool desired to be deleted will also be deleted if this IP is
not associated with any other vip request not contained in list of vip request that the user want to delete.

Example with Parameter IDs:

One ID:

/api/v3/vip-request/deploy/1/

Many IDs:

/api/v3/vip-request/deploy/1;3;8/

/api/v3/vip-request/details/

GET

Obtaining list of vip request

Obtaining list of vip request with some more details through id’s URL:

/api/v3/vip-request/details/[vip_request_ids]/

where vip_request_ids are the identifiers of vip requests desired to be retrieved with details. It can use multiple ids
separated by semicolons.

Example with Parameter IDs:

7.10. Vip Request module 115

src Documentation, Release 3.4.2

One ID:

/api/v3/vip-request/details/1/

Many IDs:

/api/v3/vip-request/details/1;3;8/

Response body:

{
"vips": [{

"id": (vip_id),
"name": (string),
"service": (string),
"business": (string),
"environmentvip": {

"id": (environmentvip_id),
"finalidade_txt": (string),
"cliente_txt": (string),
"ambiente_p44_txt": (string),
"description": (string)

},
"ipv4": {

"id": (ipv4_id)
"ip_formated": (ipv4_formated),
"description": (string)

},
"ipv6": null,
"equipments": [{

"id": (equipment_id),
"name": (string),
"equipment_type": (equipment_type_id),
"model": (model_id),
"groups": [(group_id),..]

}],
"default_names": [(string),..],
"dscp": (vip_dscp_id),
"ports": [{

"id": (vip_port_id),
"port": (integer),
"options": {

"l4_protocol": {
"id": (optionvip_id),
"tipo_opcao": (string),
"nome_opcao_txt": (string)

},
"l7_protocol": {

"id": (optionvip_id),
"tipo_opcao": (string),
"nome_opcao_txt": (string)

}
},
"pools": [{

"id": (vip_port_pool_id),
"server_pool": {

’id’: (server_pool_id),
...information from the pool, same as GET Pool*

},
"l7_rule": {

116 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

"id": (optionvip_id),
"tipo_opcao": (string),
"nome_opcao_txt": (string)

},
"order": (integer|null),
"l7_value": (string)

},...]
},...],
"options": {

"cache_group": {
"id": (optionvip_id),
"tipo_opcao": (string),
"nome_opcao_txt": (string)

},
"traffic_return": {

"id": (optionvip_id),
"tipo_opcao": (string),
"nome_opcao_txt": (string)

},
"timeout": {

"id": (optionvip_id),
"tipo_opcao": (string),
"nome_opcao_txt": (string)

},
"persistence": {

"id": (optionvip_id),
"tipo_opcao": (string),
"nome_opcao_txt": (string)

}
},
"created": (boolean)

},...]
}

• “environmentvip” attribute receives a dict with some information about the environment vip associated with
the retrieved vip request.

• “options” are the configured options vip associated to the retrieved vip request.

– cache-group, persistence, timeout and traffic_return are some values present in the database. These
values are configured to a set of restricted values.

• “ports” are the configured ports associated to the retrieved vip request.

– l4_protocol and l7_protocol in options and l7_rule in pools work as well as the values present in
“options” discussed above.

– “server_pool” attribute receives a dict with some information about the server pool associated to the
retrieved vip request.

Obtaining list of vip request with some more details through extended search Extended search permits a search
with multiple options, according with user desires. The following two examples are shown to demonstrate how easy
is to use this resource. In the first example, extended-search attribute receives an array with two dicts where the
expected result is a list of vip requests where the ipv4 “192.168.x.x” are created or the ipv4 “x.168.17.x” are not
created in each associated server pools. Remember that an OR operation is made to each element in an array and an
AND operation is made to each element in a dict. An array can be a value associated to some key into a dict as well as
a dict can be an element of an array.

7.10. Vip Request module 117

src Documentation, Release 3.4.2

In the second example, extended-search attribute receives an array with only one dict where the expected result is a
list of vip requests where the ipv4 “192.x.x.x” are created on each associated server pools and the name of each virtual
lan associated with each ipv4 contains the word “G1”. This is one of many possibilities offered by Django QuerySet
API. Due to use of icontains, the search of “G1” is not case sensitive.

More information about Django QuerySet API, please see:

:ref:‘Django QuerySet API reference <https://docs.djangoproject.com/el/1.10/ref/models/querysets/>‘_

URL:

/api/v3/vip-request/details/

GET Param:

search=[encoded dict]

Example:

/api/v3/vip-request/details/?search=[encoded dict]

First request body example:

{
"extends_search": [{

"ipv4__oct1": "192",
"ipv4__oct2": "168",
"created": true
},

{
"ipv4__oct2": "168",
"ipv4__oct3": "17",
"created": false

}],
"start_record": 0,
"custom_search": "",
"end_record": 25,
"asorting_cols": [],
"searchable_columns": []

}

Second request body example:

{
"extends_search": [{

"ipv4__vlan__nome__icontains": "G1",
"ipv4__oct1": "192",
"created": true
}

],
"start_record": 0,
"custom_search": "",
"end_record": 25,
"asorting_cols": [],
"searchable_columns": []

}

URL encoded for first request body example:

/api/v3/vip-request/details/?search=%22%7B+++++%22extends_search%22%3A+%5B%7B+++++++++%22ipv4__oct1%22%3A+%22192%22%2C+++++++++%22ipv4__oct2%22%3A+%22168%22%2C+++++++++%22created%22%3A+true+++++++++%7D%2C+++++%7B+++++++++%22ipv4__oct2%22%3A+%22168%22%2C+++++++++%22ipv4__oct3%22%3A+%2217%22%2C+++++++++%22created%22%3A+false+++++%7D%5D%2C+++++%22start_record%22%3A+0%2C+++++%22custom_search%22%3A+%22%22%2C+++++%22end_record%22%3A+25%2C+++++%22asorting_cols%22%3A+%5B%5D%2C+++++%22searchable_columns%22%3A+%5B%5D+%7D%22

118 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

URL encoded for second request body example:

/api/v3/vip-request/details/?search=%7B+++++++++%22extends_search%22%3A+%5B%7B+++++++++++++%22ipv4__vlan__nome__icontains%22%3A+%22TVGLOBO%22+%2C+++++++++++++%22ipv4__oct1%22%3A+%22192%22%2C+++++++++++++%22created%22%3A+true+++++++++++++%7D%2C+++++++++%7B+++++++++++++%22ipv4__vlan_nome__icontains%22%3A+%22G1%22%2C+++++++++++++%22ipv4__oct2%22%3A+%22168%22%2C+++++++++++++%22created%22%3A+false+++++++++%7D%5D%2C+++++++++%22start_record%22%3A+0%2C+++++++++%22custom_search%22%3A+%22%22%2C+++++++++%22end_record%22%3A+25%2C+++++++++%22asorting_cols%22%3A+%5B%5D%2C+++++++++%22searchable_columns%22%3A+%5B%5D+++++%7D

Response body:

{
"total": [integer],
"vips": [..]

}

• When “search” is used, “total” property is also retrieved.

• “environmentvip” attribute receives a dict with some information about the environment vip associated with
the retrieved vip request.

• “options” are the configured options vip associated to the retrieved vip request.

– cache-group, persistence, timeout and traffic_return are some values present in the database. These
values are configured to a set of restricted values.

• “ports” are the configured ports associated to the retrieved vip request.

– l4_protocol and l7_protocol in options and l7_rule in pools work as well as the values present in
“options” discussed above.

– “server_pool” attribute receives a dict with some information about the server pool associated to the
retrieved vip request.

/api/v3/vip-request/deploy/async/

POST

Deploying list of Vip Request asynchronously

URL:

/api/v3/vip-request/deploy/async/[vip_request_ids]/

You can also deploy Vip Request objects asynchronously. It is only necessary to provide the same as in the respective
synchronous request, where vip_request_ids are the identifiers of Vip Request objects desired to be deployed sepa-
rated by commas. In this case, when you make request NetworkAPI will create a task to fullfil it. You will not receive
the identifier of each Vip Request desired to be deployed in response, but for each Vip Request you will receive an
identifier for the created task. Since this is an asynchronous request, it may be that Vip Request objects be deployed
after you receive the response. It is your task, therefore, to consult the API through the available means to verify that
your request have been met.

URL Example with one identifier:

/api/v3/vip-request/deploy/async/

URL Example with one identifier:

/api/v3/vip-request/deploy/async/1;3;8/

Response body:

7.10. Vip Request module 119

src Documentation, Release 3.4.2

[
{

"task_id": [string with 36 characters]
},...

]

Response Example for Deploying two Vip Request objects:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"
}

]

PUT

Updating and Redeploying list of Vip Request asynchronously

URL:

/api/v3/vip-request/deploy/async/[vip_request_ids]/

You can also update and redeploy Vip Request objects asynchronously. It is only necessary to provide the same as in
the respective synchronous request (For more information about request body please check Synchronous Vip Request
Update and Redeploy). In this case, when you make request NetworkAPI will create a task to fullfil it. You will not
receive the identifier of each Vip Request desired to be updated and redeployed in response, but for each Vip Request
you will receive an identifier for the created task. Since this is an asynchronous request, it may be that Vip Request
objects be updated and redeployed after you receive the response. It is your task, therefore, to consult the API through
the available means to verify that your request have been met.

URL Example:

/api/v3/vip-request/deploy/async/[vip_request_ids]/

Response body:

[
{

"task_id": [string with 36 characters]
},...

]

Response Example for Updating and Redeploying two Vip Request objects:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"
}

]

120 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

DELETE

Undeploying list of Vip Request asynchronously

URL:

/api/v3/vip-request/deploy/async/[vip_request_ids]/

You can also undeploy Vip Request objects asynchronously. It is only necessary to provide the same as in the respective
synchronous request, where vip_request_ids are the identifiers of Vip Request objects desired to be undeployed
separated by commas. In this case, when you make request NetworkAPI will create a task to fullfil it. You will not
receive the identifier of each Vip Request desired to be undeployed in response, but for each Vip Request you will
receive an identifier for the created task. Since this is an asynchronous request, it may be that Vip Request objects be
undeployed after you receive the response. It is your task, therefore, to consult the API through the available means to
verify that your request have been met.

URL Example with one identifier:

/api/v3/vip-request/deploy/async/

URL Example with one identifier:

/api/v3/vip-request/deploy/async/1;3;8/

Response body:

[
{

"task_id": [string with 36 characters]
},...

]

Response Example for Undeploying two Vip Request objects:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"
}

]

/api/v3/vip-request/pool

GET

Obtaining vip requests associated to server pool

URL:

/api/v3/vip-request/pool/<pool_id>/

where pool_id is the identifier of the server pool used as an argument to retrieve associated vip requests. Only one
pool_id can be assigned. The instruction related to use of extra GET parameters (kind, fields, include and exclude)
and the default response body is the same as described in Vip Request GET Module

7.10. Vip Request module 121

src Documentation, Release 3.4.2

Example:

/api/v3/vip-request/pool/1/

Vlan module

/api/v3/vlan

GET

Obtaining list of Vlans

It is possible to specify in several ways fields desired to be retrieved in Vlan module through the use of some GET
parameters. You are not required to use these parameters, but depending on your needs it can make your requests
faster if you are dealing with many objects and you need few fields. The following fields are available for Vlan
module (hyperlinked or bold marked fields acts as foreign keys and can be expanded using __basic or __details when
using fields, include or exclude GET Parameters. Hyperlinked fields points to its documentation):

• id

• name

• num_vlan

• environment

• description

• acl_file_name

• acl_valida

• acl_file_name_v6

• acl_valida_v6

• active

• vrf

• acl_draft

• acl_draft_v6

• networks_ipv4

• networks_ipv6

• vrfs

• groups_permissions

Obtaining list of Vlans through id’s URL:

/api/v3/vlan/[vlan_ids]/

where vlan_ids are the identifiers of Vlans desired to be retrieved. It can use multiple id’s separated by semicolons.

Example with Parameter IDs:

One ID:

122 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

/api/v3/vlan/1/

Many IDs:

/api/v3/vlan/1;3;8/

Obtaining list of Vlans through extended search More information about Django QuerySet API, please see:

:ref:‘Django QuerySet API reference <https://docs.djangoproject.com/el/1.10/ref/models/querysets/>‘_

URL:

/api/v3/vlan/

GET Parameter:

search=[encoded dict]

Example:

/api/v3/vlan/?search=[encoded dict]

Request body example:

{
"extends_search": [{

"num_vlan": 1,
}],
"start_record": 0,
"custom_search": "",
"end_record": 25,
"asorting_cols": [],
"searchable_columns": []

}

• When “search” is used, “total” property is also retrieved.

Using fields GET parameter

Through fields, you can specify desired fields.

Example with field id:

fields=id

Example with fields id, name and num_vlan:

fields=id,name,num_vlan

Using kind GET parameter

The Vlan module also accepts the kind GET parameter. Only two values are accepted by kind: basic or details. For
each value it has a set of default fields. The difference between them is that in general details contains more fields than
basic, and the common fields between them are more detailed for details.

Example with basic option:

7.11. Vlan module 123

src Documentation, Release 3.4.2

kind=basic

Response body with basic kind:

{
"vlans": [{

"id": <integer>,
"name": <string>,
"num_vlan": <integer>

}]
}

Example with details option:

kind=details

Response body with details kind:

{
"vlans": [{

"id": <integer>,
"name": <string>,
"num_vlan": <integer>,
"environment": {

"id": <integer>,
"name": <string>,
"grupo_l3": {

"id": <integer>,
"name": <string>

},
"ambiente_logico": {

"id": <integer>,
"name": <string>

},
"divisao_dc": {

"id": <integer>,
"name": <string>

},
"filter": <integer>,
"acl_path": <string>,
"ipv4_template": <string>,
"ipv6_template": <string>,
"link": <string>,
"min_num_vlan_1": <integer>,
"max_num_vlan_1": <integer>,
"min_num_vlan_2": <integer>,
"max_num_vlan_2": <integer>,
"default_vrf": {

"id": <integer>,
"internal_name": <string>,
"vrf": <string>

},
"father_environment": <recurrence-to:environment>

},
"description": <string>,
"acl_file_name": <string>,
"acl_valida": <boolean>,
"acl_file_name_v6": <string>,
"acl_valida_v6": <boolean>,

124 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

"active": <boolean>,
"vrf": <string>,
"acl_draft": <string>,
"acl_draft_v6": <string>

}]
}

Using fields and kind together

If fields is being used together kind, only the required fields will be retrieved instead of default.

Example with details kind and id field:

kind=details&fields=id

Default behavior without kind and fields

If neither kind nor fields are used in request, the response body will look like this:

Response body:

{
"vlans": [{

"id": <integer>,
"name": <string>,
"num_vlan": <integer>,
"environment": <integer>,
"description": <string>,
"acl_file_name": <string>,
"acl_valida": <boolean>,
"acl_file_name_v6": <string>,
"acl_valida_v6": <boolean>,
"active": <boolean>,
"vrf": <string>,
"acl_draft": <string>,
"acl_draft_v6": <string>

},...]
}

POST

Creating list of vlans

URL:

/api/v3/vlan/

Request body:

{
"vlans": [{

"name": [string],
"num_vlan": [integer],
"environment": [environment_id:integer],
"description": [string],

7.11. Vlan module 125

src Documentation, Release 3.4.2

"acl_file_name": [string],
"acl_valida": [boolean],
"acl_file_name_v6": [string],
"acl_valida_v6": [boolean],
"active": [boolean],
"vrf": [string],
"acl_draft": [string],
"acl_draft_v6": [string],
"create_networkv4": {

"network_type": [network_type_id:integer],
"environmentvip": [environmentvip_id:integer],
"prefix": [integer]

},
"create_networkv6": {

"network_type": [network_type_id:integer],
"environmentvip": [environmentvip_id:integer],
"prefix": [integer]

}
},..]

}

Request Example with only required fields:

{
"vlans": [{

"name": "Vlan for NetworkAPI",
"environment": 5,

}]
}

Request Example with some more fields:

{
"vlans": [{

"name": "Vlan for NetworkAPI",
"num_vlan": 3,
"environment": 5,
"active": True,
"create_networkv4": {

"network_type": 6,
"environmentvip": 2,
"prefix": 24

}
}]

}

Through Vlan POST route you can create one or more Vlans. Only “name” and “environment” fields are required.
You can specify other fields such as:

• name - As said, it will be Vlan name.

• num_vlan - You can specify manually the number of Vlan. However NetworkAPI can create it automatically
for you.

• environment - You are required to associate Vlan with some environment.

• acl_file_name and acl_file_name_v6 - You can give ACL names for associated NetworkIPv4 and NetworkIPv6.

• acl_valida and acl_valida_v6 - If not specified ACLs will not be validated by default.

• active - If not specified, Vlan will be set to not active.

126 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

• vrf - Define in what VRF Vlan will be placed.

• acl_draft and acl_draft_v6 - String to define acl draft.

• create_networkv4 and create_networkv6 - Through these objects you can create NetworkIPv4 or NetworkIPv6 and automatically associate them to created Vlan.

– network_type - You can specify the type of Network that is desired to create, but you are not required
to do that.

– environmentvip - You can associate Network with some Environment Vip, but you are not required
to do that.

– prefix - You are required to specify the prefix of Network. For NetworkIPv4 it ranges from 0 to 31
and for NetworkIPv6 it ranges from 0 to 127.

At the end of POST request, it will be returned the identifiers of new Vlans created.

Response Body:

[
{

"id": [integer]
},...

]

Response Example for two Vlans created:

[
{

"id": 10
},
{

"id": 11
}

]

URL Example:

/api/v3/vlan/

PUT

Updating list of Vlans in database

URL:

/api/v3/vlan/[vlan_ids]/

where vlan_ids are the identifiers of Vlans. It can use multiple ids separated by semicolons.

Example with Parameter IDs:

One ID:

/api/v3/vlan/1/

Many IDs:

/api/v3/vlan/1;3;8/

7.11. Vlan module 127

src Documentation, Release 3.4.2

Request body:

{
"vlans": [{

"name": [string],
"num_vlan": [integer],
"environment": [environment_id:integer],
"description": [string],
"acl_file_name": [string],
"acl_valida": [boolean],
"acl_file_name_v6": [string],
"acl_valida_v6": [boolean],
"active": [boolean],
"vrf": [string],
"acl_draft": [string],
"acl_draft_v6": [string]

},..]
}

Request Example:

{
"vlans": [{

"id": 1,
"name": "Vlan changed",
"num_vlan": 4,
"environment": 2,
"description": "",
"acl_file_name": "",
"acl_valida": false ,
"acl_file_name_v6": "",
"acl_valida_v6": false,
"active": false,
"vrf": ’VrfBorda’,
"acl_draft": "",
"acl_draft_v6": ""

}]
}

In Vlan PUT request, you need to specify all fields even you don’t want to change some of them.

• id - Identifier of Vlan that will be changed.

• name - As said, it will be Vlan name.

• num_vlan - You can specify manually the number of Vlan. However NetworkAPI can create it automatically
for you.

• environment - You are required to associate Vlan with some environment.

• acl_file_name and acl_file_name_v6 - You can give ACL names for associated NetworkIPv4 and NetworkIPv6.

• acl_valida and acl_valida_v6 - If not specified ACLs will not be validated by default.

• active - If not specified, Vlan will be set to not active.

• vrf - Define in what VRF Vlan will be placed.

• acl_draft and acl_draft_v6 - String to define acl draft.

• create_networkv4 and create_networkv6 - Through these objects you can create NetworkIPv4 or NetworkIPv6 and automatically associate them to created Vlan.

128 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

– network_type - You can specify the type of Network that is desired to create, but you are not required
to do that.

– environmentvip - You can associate Network with some Environment Vip, but you are not required
to do that.

– prefix - You are required to specify the prefix of Network. For NetworkIPv4 it ranges from 0 to 31
and for NetworkIPv6 it ranges from 0 to 127.

URL Example:

/api/v3/vlan/1/

DELETE

Deleting a list of vlan in database

Deleting list of vlan and associated Networks and Object Group Permissions URL:

/api/v3/vlan/[vlan_ids]/

where vlan_ids are the identifiers of vlans desired to delete. It can use multiple id’s separated by semicolons. Doing
this, all NetworkIPv4 and NetworkIPv6 associated with Vlan desired to be deleted will be deleted too. All Object
Group Permissions will also be deleted.

Example with Parameter IDs:

One ID:

/api/v3/vlan/1/

Many IDs:

/api/v3/vlan/1;3;8/

/api/v3/vlan/async/

POST

Creating list of vlans asynchronously

URL:

/api/v3/vlan/async/

You can also create Vlans asynchronously. It is only necessary to provide the same as in the respective synchronous
request (For more information about request body please check Synchronous Vlan Creating). In this case, when you
make request NetworkAPI will create a task to fullfil it. You will not receive the identifier of each Vlan desired to be
created in response, but for each Vlan you will receive an identifier for the created task. Since this is an asynchronous
request, it may be that Vlans have been created after you receive the response. It is your task, therefore, to consult the
API through the available means to verify that your request have been met.

URL Example:

/api/v3/vlan/async/

Response body:

7.11. Vlan module 129

src Documentation, Release 3.4.2

[
{

"task_id": [string with 36 characters]
},...

]

Response Example for update of two Vlans:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"
}

]

PUT

Updating list of vlans asynchronously

URL:

/api/v3/vlan/async/

You can also update Vlans asynchronously. It is only necessary to provide the same as in the respective synchronous
request (For more information about request body please check Synchronous Vlan Updating). In this case, when you
make request NetworkAPI will create a task to fullfil it. You will not receive the identifier of each Vlan desired to be
updated in response, but for each Vlan you will receive an identifier for the created task. Since this is an asynchronous
request, it may be that Vlans have been updated after you receive the response. It is your task, therefore, to consult the
API through the available means to verify that your request have been met.

URL Example:

/api/v3/vlan/async/

Response body:

[
{

"task_id": [string with 36 characters]
},...

]

Response Example for update of two Vlans:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"
}

]

DELETE

130 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

Deleting list of vlans asynchronously

URL:

/api/v3/vlan/async/

You can also delete Vlans asynchronously. It is only necessary to provide the same as in the respective synchronous
request (For more information please check Synchronous Vlan Deleting). In this case, when you make request Net-
workAPI will create a task to fullfil it. You will not receive an empty dict in response as occurs in the synchronous
request, but for each Vlan you will receive an identifier for the created task. Since this is an asynchronous request,
it may be that Vlans have been updated after you receive the response. It is your task, therefore, to consult the API
through the available means to verify that your request have been met.

URL Example:

/api/v3/vlan/async/

Response body:

[
{

"task_id": [string with 36 characters]
},...

]

Response Example for update of two Vlans:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"
}

]

NetworkIPv4 module

/api/v3/networkv4/

GET

Obtaining list of Network IPv4 objects

It is possible to specify in several ways fields desired to be retrieved in Network IPv4 module through the use of some
GET parameters. You are not required to use these parameters, but depending on your needs it can make your requests
faster if you are dealing with many objects and you need few fields. The following fields are available for Network
IPv4 module (hyperlinked or bold marked fields acts as foreign keys and can be expanded using __basic or __details
when using fields, include or exclude GET Parameters. Hyperlinked fields points to its documentation):

• id

• oct1

• oct2

• oct3

7.12. NetworkIPv4 module 131

src Documentation, Release 3.4.2

• oct4

• prefix

• networkv4

• mask_oct1

• mask_oct2

• mask_oct3

• mask_oct4

• mask_formated

• broadcast

• vlan

• network_type

• environmentvip

• active

• dhcprelay

• cluster_unit

Obtaining list of Network IPv4 objects through id’s URL:

/api/v3/networkv4/[networkv4_ids]/

where networkv4_ids are the identifiers of Network IPv4 objects desired to be retrieved. It can use multiple id’s
separated by semicolons.

Example with Parameter IDs:

One ID:

/api/v3/networkv4/1/

Many IDs:

/api/v3/networkv4/1;3;8/

Obtaining list of Network IPv4 objects through extended search More information about Django QuerySet API,
please see:

:ref:‘Django QuerySet API reference <https://docs.djangoproject.com/el/1.10/ref/models/querysets/>‘_

URL:

/api/v3/networkv4/

GET Parameter:

search=[encoded dict]

Example:

/api/v3/networkv4/?search=[encoded dict]

132 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

Request body example:

{
"extends_search": [

{
"oct1": 10,

},
{

"oct1": 172,
}

],
"start_record": 0,
"custom_search": "",
"end_record": 25,
"asorting_cols": [],
"searchable_columns": []

}

• When “search” is used, “total” property is also retrieved.

Using fields GET parameter

Through fields, you can specify desired fields.

Example with field id:

fields=id

Example with fields id, networkv4 and mask_formated:

fields=id,networkv4,mask_formated

Using kind GET parameter

The Network IPv4 module also accepts the kind GET parameter. Only two values are accepted by kind: basic or
details. For each value it has a set of default fields. The difference between them is that in general details contains
more fields than basic, and the common fields between them are more detailed for details.

Example with basic option:

kind=basic

Response body with basic kind:

{
"networks": [

{
"id": <integer>,
"networkv4": <string>,
"mask_formated": <string>,
"broadcast": <string>,
"vlan": {

"id": <integer>,
"name": <string>,
"num_vlan": <integer>

},
"network_type": <integer>,

7.12. NetworkIPv4 module 133

src Documentation, Release 3.4.2

"environmentvip": <integer>
}

]
}

Example with details option:

kind=details

Response body with details kind:

{
"networks": [

{
"id": <integer>,
"oct1": <integer>,
"oct2": <integer>,
"oct3": <integer>,
"oct4": <integer>,
"prefix": <integer>,
"networkv4": <string>,
"mask_oct1": <integer>,
"mask_oct2": <integer>,
"mask_oct3": <integer>,
"mask_oct4": <integer>,
"mask_formated": <string>,
"broadcast": <string>,
"vlan": {

"id": <integer>,
"name": <string>,
"num_vlan": <integer>,
"environment": <integer>,
"description": <string>,
"acl_file_name": <string>,
"acl_valida": <boolean>,
"acl_file_name_v6": <string>,
"acl_valida_v6": <boolean>,
"active": <boolean>,
"vrf": <string>,
"acl_draft": <string>,
"acl_draft_v6": <string>

},
"network_type": {

"id": <integer>,
"tipo_rede": <string>

},
"environmentvip": {

"id": <integer>,
"finalidade_txt": <string>,
"cliente_txt": <string>,
"ambiente_p44_txt": <string>,
"description": <string>

},
"active": <boolean>,
"dhcprelay": [

<string>, ...
],
"cluster_unit": <string>

}

134 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

]
}

Using fields and kind together

If fields is being used together kind, only the required fields will be retrieved instead of default.

Example with details kind and id field:

kind=details&fields=id

Default behavior without kind and fields

If neither kind nor fields are used in request, the response body will look like this:

Response body:

{
"networks": [

{
"id": <integer>,
"oct1": <integer>,
"oct2": <integer,
"oct3": <integer>,
"oct4": <integer>,
"prefix": <integer>,
"mask_oct1": <integer>,
"mask_oct2": <integer>,
"mask_oct3": <integer>,
"mask_oct4": <integer>,
"broadcast": <string>,
"vlan": <integer>,
"network_type": <integer>,
"environmentvip": <integer>,
"active": <boolean>,
"cluster_unit": <string>

}
]

}

POST

Creating list of IPv4 objects

URL:

/api/v3/networkv4/

Request body:

{
"networks": [{

"oct1": <integer>,
"oct2": <integer>,
"oct3": <integer>,

7.12. NetworkIPv4 module 135

src Documentation, Release 3.4.2

"oct4": <integer>,
"prefix": <integer>,
"mask_oct1": <integer>,
"mask_oct2": <integer>,
"mask_oct3": <integer>,
"mask_oct4": <integer>,
"vlan": <integer>,
"network_type": <integer>,
"environmentvip": <integer>,
"cluster_unit": <string>,

},..]
}

Request Example with only required fields:

{
"networks": [{

"vlan": 10
}]

}

Request Example with some more fields:

{
"networks": [{

"oct1": 10,
"oct2": 0,
"oct3": 0,
"oct4": 0,
"prefix": 24,
"network_type": 5,
"environmentvip": 5,
"vlan": 5

}]
}

Through Network IPv4 POST route you can create one or more Network IPv4 objects. Only “vlan” field are required.
You can specify other fields such as:

• oct1, oct2, oct3, oct4 - Are the octets of Network IPv4. Given an Vlan, API can provide automatically a
Network IPv4 range to you, but it’s possible to assign a Network IPv4 range respecting limits defined in Vlan.
If you specify some octet, you need to specify all the others.

• mask_oct1, mask_oct2, mask_oct3, mask_oct4 and prefix - If you specify octets of Network IPv4, it’ manda-
tory to specify the mask by octets or by prefix.

• network_type - Says if it’s a valid/invalid network of Vip Requests, Equipments or NAT.

• environmentvip - Use it to associate a new Network IPv4 to an existent Environment Vip

At the end of POST request, it will be returned the identifiers of new Network IPv4 objects created.

Response Body:

[
{

"id": <integer>
},...

]

Response Example for two Network IPv4 objects created:

136 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

[
{

"id": 10
},
{

"id": 11
}

]

URL Example:

/api/v3/networkv4/

PUT

Updating list of Network IPv4 objects in database

URL:

/api/v3/networkv4/[networkv4_ids]/

where networkv4_ids are the identifiers of Network IPv4 objects. It can use multiple ids separated by semicolons.

Example with Parameter IDs:

One ID:

/api/v3/networkv4/1/

Many IDs:

/api/v3/networkv4/1;3;8/

Request body:

{
"networks": [{

"id": <integer>,
"network_type": <integer>,
"environmentvip": <integer>,
"cluster-unit": <string>

},..]
}

Request Example:

{
"networks": [{

"id": 1,
"network_type": 2,
"environmentvip": 2,
"cluster-unit": ""

}]
}

In Network IPv4 PUT request, you can only change cluster-unit, environmentvip and network_type. If you don’t
provide at your request some of attributes below, this attribute will be changed to Null in database.

• id - Identifier of Network IPv4 that will be changed. It’s mandatory.

7.12. NetworkIPv4 module 137

src Documentation, Release 3.4.2

• network_type - Says if it’s a valid/invalid network of Vip Requests, Equipments or NAT.

• environmentvip - Use it to associate Network IPv4 to an existent Environment Vip.

URL Example:

/api/v3/networkv4/1/

DELETE

Deleting a list of Network IPv4 objects in database

Deleting list of Network IPv4 objects and associated IPv4 addresses URL:

/api/v3/networkv4/[networkv4_ids]/

where networkv4_ids are the identifiers of Network IPv4 objects desired to delete. It can use multiple id’s separated
by semicolons. Doing this, all IP addresses of Network IPv4 desired to be deleted will be also deleted. Remember that
you can’t delete Network IPv4 in database if it is deployed or if it exists Vip Request using some IP address of this
Network IPv4.

Example with Parameter IDs:

One ID:

/api/v3/networkv4/1/

Many IDs:

/api/v3/networkv4/1;3;8/

/api/v3/networkv4/deploy/

POST

Deploying list of Network IPv4 in equipments

URL:

/api/v3/networkv4/deploy/[networkv4_ids]/

where networkv4_ids are the identifiers of Network IPv4 desired to be deployed. These selected Network IPv4 objects
must exist in the database. networkv4_ids can also be assigned to multiple id’s separated by semicolons.

Examples:

One ID:

/api/v3/networkv4/deploy/1/

Many IDs:

/api/v3/networkv4/deploy/1;3;8/

138 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

DELETE

Undeploying list of Network IPv4 objects from equipments

URL:

/api/v3/networkv4/deploy/[networkv4_ids]/

where networkv4_ids are the identifiers of Network IPv4 objects desired to be undeployed from equipments. It
can use multiple id’s separated by semicolons. The undeployed Network IPv4 will continue existing in database as
inactive.

Example with Parameter IDs:

One ID:

/api/v3/networkv4/deploy/1/

Many IDs:

/api/v3/networkv4/deploy/1;3;8/

/api/v3/networkv4/async/

POST

Creating list of Network IPv4 asynchronously

URL:

/api/v3/networkv4/async/

You can also create Network IPv4 objects asynchronously. It is only necessary to provide the same as in the respective
synchronous request (For more information about request body please check Synchronous Network IPv4 Creating).
In this case, when you make request NetworkAPI will create a task to fullfil it. You will not receive the identifier
of each Network IPv4 desired to be created in response, but for each Network IPv4 you will receive an identifier for
the created task. Since this is an asynchronous request, it may be that Network IPv4 objects have been created after
you receive the response. It is your task, therefore, to consult the API through the available means to verify that your
request have been met.

URL Example:

/api/v3/networkv4/async/

Response body:

[
{

"task_id": [string with 36 characters]
},...

]

Response Example for update of two Network IPv4 objects:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},

7.12. NetworkIPv4 module 139

src Documentation, Release 3.4.2

{
"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"

}
]

PUT

Updating list of Network IPv4 asynchronously

URL:

/api/v3/networkv4/async/

You can also update Network IPv4 objects asynchronously. It is only necessary to provide the same as in the respective
synchronous request (For more information about request body please check Synchronous Network IPv4 Updating).
In this case, when you make request NetworkAPI will create a task to fullfil it. You will not receive the identifier of
each Network IPv4 desired to be updated in response, but for each Network IPv4 you will receive an identifier for
the created task. Since this is an asynchronous request, it may be that Network IPv4 objects have been updated after
you receive the response. It is your task, therefore, to consult the API through the available means to verify that your
request have been met.

URL Example:

/api/v3/networkv4/async/

Response body:

[
{

"task_id": [string with 36 characters]
},...

]

Response Example for update of two Network IPv4 objects:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"
}

]

DELETE

Deleting list of Network IPv4 asynchronously

URL:

/api/v3/networkv4/async/

You can also delete Network IPv4 objects asynchronously. It is only necessary to provide the same as in the respective
synchronous request (For more information please check Synchronous Network IPv4 Deleting). In this case, when you
make request NetworkAPI will create a task to fullfil it. You will not receive an empty dict in response as occurs in

140 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

the synchronous request, but for each Network IPv4 you will receive an identifier for the created task. Since this is
an asynchronous request, it may be that Network IPv4 objects have been updated after you receive the response. It is
your task, therefore, to consult the API through the available means to verify that your request have been met.

URL Example:

/api/v3/networkv4/async/

Response body:

[
{

"task_id": [string with 36 characters]
},...

]

Response Example for update of two Network IPv4 objects:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"
}

]

/api/v3/networkv4/deploy/async/

POST

Deploying list of Network IPv4 asynchronously

URL:

/api/v3/networkv4/deploy/async/[networkv4_ids]/

You can also deploy Network IPv4 objects asynchronously. It is only necessary to provide the same as in the respec-
tive synchronous request, where networkv4_ids are the identifiers of Network IPv4 objects desired to be deployed
separated by commas. In this case, when you make request NetworkAPI will create a task to fullfil it. You will not
receive the identifier of each Network IPv4 desired to be deployed in response, but for each Network IPv4 you will
receive an identifier for the created task. Since this is an asynchronous request, it may be that Network IPv4 objects
be deployed after you receive the response. It is your task, therefore, to consult the API through the available means
to verify that your request have been met.

URL Example with one identifier:

/api/v3/networkv4/deploy/async/

URL Example with one identifier:

/api/v3/networkv4/deploy/async/1;3;8/

Response body:

[
{

"task_id": [string with 36 characters]

7.12. NetworkIPv4 module 141

src Documentation, Release 3.4.2

},...
]

Response Example for Deploying two Network IPv4 objects:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"
}

]

DELETE

Undeploying list of Network IPv4 asynchronously

URL:

/api/v3/networkv4/deploy/async/[networkv4_ids]/

You can also undeploy Network IPv4 objects asynchronously. It is only necessary to provide the same as in the respec-
tive synchronous request, where networkv4_ids are the identifiers of Network IPv4 objects desired to be undeployed
separated by commas. In this case, when you make request NetworkAPI will create a task to fullfil it. You will not
receive the identifier of each Network IPv4 desired to be undeployed in response, but for each Network IPv4 you will
receive an identifier for the created task. Since this is an asynchronous request, it may be that Network IPv4 objects
be undeployed after you receive the response. It is your task, therefore, to consult the API through the available means
to verify that your request have been met.

URL Example with one identifier:

/api/v3/networkv4/deploy/async/

URL Example with one identifier:

/api/v3/networkv4/deploy/async/1;3;8/

Response body:

[
{

"task_id": [string with 36 characters]
},...

]

Response Example for Undeploying two Network IPv4 objects:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"
}

]

142 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

NetworkIPv6 module

/api/v3/networkv6/

GET

Obtaining list of Network IPv6 objects

It is possible to specify in several ways fields desired to be retrieved in Network IPv6 module through the use of some
GET parameters. You are not required to use these parameters, but depending on your needs it can make your requests
faster if you are dealing with many objects and you need few fields. The following fields are available for Network
IPv6 module (hyperlinked or bold marked fields acts as foreign keys and can be expanded using __basic or __details
when using fields, include or exclude GET Parameters. Hyperlinked fields points to its documentation):

• id

• block1

• block2

• block3

• block4

• block5

• block6

• block7

• block8

• prefix

• networkv6

• mask1

• mask2

• mask3

• mask4

• mask5

• mask6

• mask7

• mask8

• mask_formated

• vlan

• network_type

• environmentvip

• active

• dhcprelay

• cluster_unit

7.13. NetworkIPv6 module 143

src Documentation, Release 3.4.2

Obtaining list of Network IPv6 objects through id’s URL:

/api/v3/networkv6/[networkv6_ids]/

where networkv6_ids are the identifiers of Network IPv6 objects desired to be retrieved. It can use multiple id’s
separated by semicolons.

Example with Parameter IDs:

One ID:

/api/v3/networkv6/1/

Many IDs:

/api/v3/networkv6/1;3;8/

Obtaining list of Network IPv6 objects through extended search More information about Django QuerySet API,
please see:

:ref:‘Django QuerySet API reference <https://docs.djangoproject.com/el/1.10/ref/models/querysets/>‘_

URL:

/api/v3/networkv6/

GET Parameter:

search=[encoded dict]

Example:

/api/v3/networkv6/?search=[encoded dict]

Request body example:

{
"extends_search": [

{
"block1": "fefe",

},
{

"block1": "fdbe",
}

],
"start_record": 0,
"custom_search": "",
"end_record": 25,
"asorting_cols": [],
"searchable_columns": []

}

• When “search” is used, “total” property is also retrieved.

Using fields GET parameter

Through fields, you can specify desired fields.

Example with field id:

144 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

fields=id

Example with fields id, networkv6 and mask_formated:

fields=id,networkv6,mask_formated

Using kind GET parameter

The Network IPv6 module also accepts the kind GET parameter. Only two values are accepted by kind: basic or
details. For each value it has a set of default fields. The difference between them is that in general details contains
more fields than basic, and the common fields between them are more detailed for details.

Example with basic option:

kind=basic

Response body with basic kind:

{
"networks": [

{
"id": <integer>,
"networkv6": <string>,
"mask_formated": <string>,
"vlan": {

"id": <integer>,
"name": <string>,
"num_vlan": <integer>

},
"network_type": <integer>,
"environmentvip": <integer>

}
]

}

Example with details option:

kind=details

Response body with details kind:

{
"networks": [

{
"id": <integer>,
"block1": <string>,
"block2": <string>,
"block3": <string>,
"block4": <string>,
"block5": <string>,
"block6": <string>,
"block7": <string>,
"block8": <string>,
"prefix": <integer>,
"networkv6": <string>,
"mask1": <string>,
"mask2": <string>,
"mask3": <string>,
"mask4": <string>,

7.13. NetworkIPv6 module 145

src Documentation, Release 3.4.2

"mask5": <string>,
"mask6": <string>,
"mask7": <string>,
"mask8": <string>,
"mask_formated": <string>,
"vlan": {

"id": <integer>,
"name": <string>,
"num_vlan": <integer>,
"environment": <integer>,
"description": <string>,
"acl_file_name": <string>,
"acl_valida": <boolean>,
"acl_file_name_v6": <string>,
"acl_valida_v6": <boolean>,
"active": <boolean>,
"vrf": <string>,
"acl_draft": <string>,
"acl_draft_v6": <string>

},
"network_type": {

"id": <integer>,
"tipo_rede": <string>

},
"environmentvip": {

"id": <integer>,
"finalidade_txt": <string>,
"cliente_txt": <string>,
"ambiente_p44_txt": <string>,
"description": <string>

},
"active": <boolean>,
"dhcprelay": [

<string>, ...
],
"cluster_unit": <string>

}
]

}

Using fields and kind together

If fields is being used together kind, only the required fields will be retrieved instead of default.

Example with details kind and id field:

kind=details&fields=id

Default behavior without kind and fields

If neither kind nor fields are used in request, the response body will look like this:

Response body:

{
"networks": [

146 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

{
"id": <integer>,
"block1": <string>,
"block2": <string>,
"block3": <string>,
"block4": <string>,
"block5": <string>,
"block6": <string>,
"block7": <string>,
"block8": <string>,
"prefix": <integer>,
"mask1": <string>,
"mask2": <string>,
"mask3": <string>,
"mask4": <string>,
"mask5": <string>,
"mask6": <string>,
"mask7": <string>,
"mask8": <string>,
"vlan": <integer>,
"network_type": <integer>,
"environmentvip": <integer>,
"active": <boolean>,
"cluster_unit": <string>

}
]

}

POST

Creating list of IPv6 objects

URL:

/api/v3/networkv6/

Request body:

{
"networks": [{

"block1": <string>,
"block2": <string>,
"block3": <string>,
"block4": <string>,
"block5": <string>,
"block6": <string>,
"block7": <string>,
"block8": <string>,
"prefix": <integer>,
"mask1": <string>,
"mask2": <string>,
"mask3": <string>,
"mask4": <string>,
"mask5": <string>,
"mask6": <string>,
"mask7": <string>,
"mask8": <string>,

7.13. NetworkIPv6 module 147

src Documentation, Release 3.4.2

"vlan": <integer>,
"network_type": <integer>,
"environmentvip": <integer>,
"cluster_unit": <string>,

},..]
}

Request Example with only required fields:

{
"networks": [{

"vlan": 10
}]

}

Request Example with some more fields:

{
"networks": [{

"block1": "fdbe",
"block2": "bebe",
"block3": "bebe",
"block4": "bebe",
"block5": "0000",
"block6": "0000",
"block7": "0000",
"block8": "0000",
"prefix": 64,
"network_type": 5,
"environmentvip": 5,
"vlan": 5

}]
}

Through Network IPv6 POST route you can create one or more Network IPv6 objects. Only “vlan” field are required.
You can specify other fields such as:

• block1, block2, block3, block4, block5, block6, block7, block8 - Are the octets of Network IPv6. Given an
Vlan, API can provide automatically a Network IPv6 range to you, but it’s possible to assign a Network IPv6
range respecting limits defined in Vlan. If you specify some octet, you need to specify all the others.

• mask1, mask2, mask3, mask4, mask5, mask6, mask7, mask8 and prefix - If you specify octets of Network
IPv6, it’ mandatory to specify the mask by octets or by prefix.

• network_type - Says if it’s a valid/invalid network of Vip Requests, Equipments or NAT.

• environmentvip - Use it to associate a new Network IPv6 to an existent Environment Vip

At the end of POST request, it will be returned the identifiers of new Network IPv6 objects created.

Response Body:

[
{

"id": <integer>
},...

]

Response Example for two Network IPv6 objects created:

148 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

[
{

"id": 10
},
{

"id": 11
}

]

URL Example:

/api/v3/networkv6/

PUT

Updating list of Network IPv6 objects in database

URL:

/api/v3/networkv6/[networkv6_ids]/

where networkv6_ids are the identifiers of Network IPv6 objects. It can use multiple ids separated by semicolons.

Example with Parameter IDs:

One ID:

/api/v3/networkv6/1/

Many IDs:

/api/v3/networkv6/1;3;8/

Request body:

{
"networks": [{

"id": <integer>,
"network_type": <integer>,
"environmentvip": <integer>,
"cluster-unit": <string>

},..]
}

Request Example:

{
"networks": [{

"id": 1,
"network_type": 2,
"environmentvip": 2,
"cluster-unit": ""

}]
}

In Network IPv6 PUT request, you can only change cluster-unit, environmentvip and network_type. If you don’t
provide at your request some of attributes below, this attribute will be changed to Null in database.

• id - Identifier of Network IPv6 that will be changed. It’s mandatory.

7.13. NetworkIPv6 module 149

src Documentation, Release 3.4.2

• network_type - Says if it’s a valid/invalid network of Vip Requests, Equipments or NAT.

• environmentvip - Use it to associate Network IPv6 to an existent Environment Vip.

URL Example:

/api/v3/networkv6/1/

DELETE

Deleting a list of Network IPv6 objects in database

Deleting list of Network IPv6 objects and associated IPv6 addresses URL:

/api/v3/networkv6/[networkv6_ids]/

where networkv6_ids are the identifiers of Network IPv6 objects desired to delete. It can use multiple id’s separated
by semicolons. Doing this, all IP addresses of Network IPv6 desired to be deleted will be also deleted. Remember that
you can’t delete Network IPv6 in database if it is deployed or if it exists Vip Request using some IP address of this
Network IPv6.

Example with Parameter IDs:

One ID:

/api/v3/networkv6/1/

Many IDs:

/api/v3/networkv6/1;3;8/

/api/v3/networkv6/deploy/

POST

Deploying list of Network IPv6 in equipments

URL:

/api/v3/networkv6/deploy/[networkv6_ids]/

where networkv6_ids are the identifiers of Network IPv6 desired to be deployed. These selected Network IPv6 objects
must exist in the database. networkv6_ids can also be assigned to multiple id’s separated by semicolons.

Examples:

One ID:

/api/v3/networkv6/deploy/1/

Many IDs:

/api/v3/networkv6/deploy/1;3;8/

150 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

DELETE

Undeploying list of Network IPv6 objects from equipments

URL:

/api/v3/networkv6/deploy/[networkv6_ids]/

where networkv6_ids are the identifiers of Network IPv6 objects desired to be undeployed from equipments. It
can use multiple id’s separated by semicolons. The undeployed Network IPv6 will continue existing in database as
inactive.

Example with Parameter IDs:

One ID:

/api/v3/networkv6/deploy/1/

Many IDs:

/api/v3/networkv6/deploy/1;3;8/

/api/v3/networkv6/async/

POST

Creating list of Network IPv6 asynchronously

URL:

/api/v3/networkv6/async/

You can also create Network IPv6 objects asynchronously. It is only necessary to provide the same as in the respective
synchronous request (For more information about request body please check Synchronous Network IPv6 Creating).
In this case, when you make request NetworkAPI will create a task to fullfil it. You will not receive the identifier
of each Network IPv6 desired to be created in response, but for each Network IPv6 you will receive an identifier for
the created task. Since this is an asynchronous request, it may be that Network IPv6 objects have been created after
you receive the response. It is your task, therefore, to consult the API through the available means to verify that your
request have been met.

URL Example:

/api/v3/networkv6/async/

Response body:

[
{

"task_id": [string with 36 characters]
},...

]

Response Example for update of two Network IPv6 objects:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},

7.13. NetworkIPv6 module 151

src Documentation, Release 3.4.2

{
"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"

}
]

PUT

Updating list of Network IPv6 asynchronously

URL:

/api/v3/networkv6/async/

You can also update Network IPv6 objects asynchronously. It is only necessary to provide the same as in the respective
synchronous request (For more information about request body please check Synchronous Network IPv6 Updating).
In this case, when you make request NetworkAPI will create a task to fullfil it. You will not receive the identifier of
each Network IPv6 desired to be updated in response, but for each Network IPv6 you will receive an identifier for
the created task. Since this is an asynchronous request, it may be that Network IPv6 objects have been updated after
you receive the response. It is your task, therefore, to consult the API through the available means to verify that your
request have been met.

URL Example:

/api/v3/networkv6/async/

Response body:

[
{

"task_id": [string with 36 characters]
},...

]

Response Example for update of two Network IPv6 objects:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"
}

]

DELETE

Deleting list of Network IPv6 asynchronously

URL:

/api/v3/networkv6/async/

You can also delete Network IPv6 objects asynchronously. It is only necessary to provide the same as in the respective
synchronous request (For more information please check Synchronous Network IPv6 Deleting). In this case, when you
make request NetworkAPI will create a task to fullfil it. You will not receive an empty dict in response as occurs in

152 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

the synchronous request, but for each Network IPv6 you will receive an identifier for the created task. Since this is
an asynchronous request, it may be that Network IPv6 objects have been updated after you receive the response. It is
your task, therefore, to consult the API through the available means to verify that your request have been met.

URL Example:

/api/v3/networkv6/async/

Response body:

[
{

"task_id": [string with 36 characters]
},...

]

Response Example for update of two Network IPv6 objects:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"
}

]

/api/v3/networkv6/deploy/async/

POST

Deploying list of Network IPv6 asynchronously

URL:

/api/v3/networkv6/deploy/async/[networkv6_ids]/

You can also deploy Network IPv6 objects asynchronously. It is only necessary to provide the same as in the respec-
tive synchronous request, where networkv6_ids are the identifiers of Network IPv6 objects desired to be deployed
separated by commas. In this case, when you make request NetworkAPI will create a task to fullfil it. You will not
receive the identifier of each Network IPv6 desired to be deployed in response, but for each Network IPv6 you will
receive an identifier for the created task. Since this is an asynchronous request, it may be that Network IPv6 objects
be deployed after you receive the response. It is your task, therefore, to consult the API through the available means
to verify that your request have been met.

URL Example with one identifier:

/api/v3/networkv6/deploy/async/

URL Example with one identifier:

/api/v3/networkv6/deploy/async/1;3;8/

Response body:

[
{

"task_id": [string with 36 characters]

7.13. NetworkIPv6 module 153

src Documentation, Release 3.4.2

},...
]

Response Example for Deploying two Network IPv6 objects:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"
}

]

DELETE

Undeploying list of Network IPv6 asynchronously

URL:

/api/v3/networkv6/deploy/async/[networkv6_ids]/

You can also undeploy Network IPv6 objects asynchronously. It is only necessary to provide the same as in the respec-
tive synchronous request, where networkv6_ids are the identifiers of Network IPv6 objects desired to be undeployed
separated by commas. In this case, when you make request NetworkAPI will create a task to fullfil it. You will not
receive the identifier of each Network IPv6 desired to be undeployed in response, but for each Network IPv6 you will
receive an identifier for the created task. Since this is an asynchronous request, it may be that Network IPv6 objects
be undeployed after you receive the response. It is your task, therefore, to consult the API through the available means
to verify that your request have been met.

URL Example with one identifier:

/api/v3/networkv6/deploy/async/

URL Example with one identifier:

/api/v3/networkv6/deploy/async/1;3;8/

Response body:

[
{

"task_id": [string with 36 characters]
},...

]

Response Example for Undeploying two Network IPv6 objects:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"
}

]

154 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

IPv4 module

/api/v3/ipv4/

GET

Obtaining list of IPv4 objects

It is possible to specify in several ways fields desired to be retrieved in IPv4 module through the use of some GET
parameters. You are not required to use these parameters, but depending on your needs it can make your requests
faster if you are dealing with many objects and you need few fields. The following fields are available for IPv4 module
(hyperlinked or bold marked fields acts as foreign keys and can be expanded using __basic or __details when using
fields, include or exclude GET Parameters. Hyperlinked fields points to its documentation. Some expandable fields
that do not have documentation have its childs described here too because some of these childs are also expandable.):

• id

• ip_formated

• oct1

• oct2

• oct3

• oct4

• networkipv4

• description

• equipments

• vips

• server_pool_members

– id

– server_pool

– identifier

– ip

– ipv6

– priority

– weight

– limit

– port_real

– member_status

– last_status_update

– last_status_update_formated

– equipments

– equipment

7.14. IPv4 module 155

src Documentation, Release 3.4.2

Obtaining list of IPv4 objects through id’s URL:

/api/v3/ipv4/[ipv4_ids]/

where ipv4_ids are the identifiers of IPv4 objects desired to be retrieved. It can use multiple id’s separated by semi-
colons.

Example with Parameter IDs:

One ID:

/api/v3/ipv4/1/

Many IDs:

/api/v3/ipv4/1;3;8/

Obtaining list of IPv4 objects through extended search More information about Django QuerySet API, please
see:

:ref:‘Django QuerySet API reference <https://docs.djangoproject.com/el/1.10/ref/models/querysets/>‘_

URL:

/api/v3/ipv4/

GET Parameter:

search=[encoded dict]

Example:

/api/v3/ipv4/?search=[encoded dict]

Request body example:

{
"extends_search": [

{
"oct1": 10,

},
{

"oct1": 172,
}

],
"start_record": 0,
"custom_search": "",
"end_record": 25,
"asorting_cols": [],
"searchable_columns": []

}

• When “search” is used, “total” property is also retrieved.

Using fields GET parameter

Through fields, you can specify desired fields.

Example with field id:

156 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

fields=id

Example with fields id, ip_formated and networkipv4:

fields=id,ip_formated,networkipv4

Using kind GET parameter

The IPv4 module also accepts the kind GET parameter. Only two values are accepted by kind: basic or details. For
each value it has a set of default fields. The difference between them is that in general details contains more fields than
basic, and the common fields between them are more detailed for details.

Example with basic option:

kind=basic

Response body with basic kind:

{

“ips”: [

{ “id”: <integer>, “ip_formated”: <string>, “networkipv4”: {

“id”: <integer>, “networkv4”: <string>, “mask_formated”: <string>, “broadcast”: <string>,
“vlan”: {

“id”: <integer>, “name”: <string>, “num_vlan”: <integer>

}, “network_type”: <integer>, “environmentvip”: <integer>

}, “description”: <string>

}

]

}

Example with details option:

kind=details

Response body with details kind:

{
"ips": [

{
"id": <integer>,
"ip_formated": <string>,
"oct4": <integer>,
"oct3": <integer>,
"oct2": <integer>,
"oct1": <integer>,
"networkipv4": {

"id": <integer>,
"oct1": <integer>,
"oct2": <integer>,
"oct3": <integer>,
"oct4": <integer>,

7.14. IPv4 module 157

src Documentation, Release 3.4.2

"prefix": <integer>,
"networkv4": <string>,
"mask_oct1": <integer>,
"mask_oct2": <integer>,
"mask_oct3": <integer>,
"mask_oct4": <integer>,
"mask_formated": <string>,
"broadcast": <string>,
"vlan": {

"id": <integer>,
"name": <string>,
"num_vlan": <integer>,
"environment": <integer>,
"description": <string>,
"acl_file_name": <string>,
"acl_valida": <boolean>,
"acl_file_name_v6": <string>,
"acl_valida_v6": <boolean>,
"active": <boolean>,
"vrf": <string>,
"acl_draft": <string>,
"acl_draft_v6": <string>

},
"network_type": {

"id": <integer>,
"tipo_rede": <string>

},
"environmentvip": {

"id": <integer>,
"finalidade_txt": <string>,
"cliente_txt": <string>,
"ambiente_p44_txt": <string>,
"description": <string>

},
"active": <boolean>,
"dhcprelay": [

<string>,...
],
"cluster_unit": <string>

},
"description": <string>

}
]

}

Using fields and kind together

If fields is being used together kind, only the required fields will be retrieved instead of default.

Example with details kind and id field:

kind=details&fields=id

Default behavior without kind and fields

If neither kind nor fields are used in request, the response body will look like this:

158 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

Response body:

{
"ips":[

{
"id": <integer>,
"oct4": <integer>,
"oct3": <integer>,
"oct2": <integer>,
"oct1": <integer>,
"networkipv4": <integer>,
"description": <string>

}
]

}

POST

Creating list of IPv4 objects

URL:

/api/v3/ipv4/

Request body:

{
"ips": [{

"oct1": <integer>,
"oct2": <integer>,
"oct3": <integer>,
"oct4": <integer>,
"networkipv4": <integer>,
"description": <string>,
"equipments": [

{
"id": <integer>

},...
]

},..]
}

Request Example with only required fields:

{
"ips": [{

"networkipv4": 10
}]

}

Request Example with some more fields:

{
"ips": [{

"oct1": 10,
"oct2": 10,
"oct3": 0,
"oct4": 20,

7.14. IPv4 module 159

src Documentation, Release 3.4.2

"networkipv4": 2,
"equipments": [

{
"id": 3

},
{

"id": 4
}

]
}]

}

Through IPv4 POST route you can create one or more IPv4 objects. Only “networkipv4” field are required. You can
specify other fields such as:

• oct1, oct2, oct3, oct4 - Are the octets of IPv4. Given a network, API can provide to you an IPv4 Address
automatically, but you can assign a IPv4 Address in a manually way. If you specify some octet, you need to
specify all the others.

• description - Description of new IPv4.

• networkipv4 - This parameter is mandatory. It is the network to which new IP address will belong.

• equipments - You can associate new IP address to one or more equipments.

At the end of POST request, it will be returned the identifiers of new IPv4 objects created.

Response Body:

[
{

"id": <integer>
},...

]

Response Example for two IPv4 objects created:

[
{

"id": 10
},
{

"id": 11
}

]

URL Example:

/api/v3/ipv4/

PUT

Updating list of IPv4 objects in database

URL:

/api/v3/ipv4/[ipv4_ids]/

where ipv4_ids are the identifiers of IPv4 objects. It can use multiple ids separated by semicolons.

160 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

Example with Parameter IDs:

One ID:

/api/v3/ipv4/1/

Many IDs:

/api/v3/ipv4/1;3;8/

Request body:

{
"ips": [{

"id": <integer>,
"description": <string>,
"equipments": [

{
"id": <integer>

},...
]

},..]
}

Request Example:

{
"ips": [{

"id": 1,
"description": "New description",
"equipments": [

{
"id": 5

},
{

"id": 6
}

]
}]

}

In IPv4 PUT request, you can only change description and associations with equipments.

• id - Identifier of IPv4 that will be changed. It’s mandatory.

• description - Description of new IPv4.

• equipments - You can create new associations with equipments when updating IPv4. Old associations will be
deleted even you don’t specify new associations to other equipments.

URL Example:

/api/v3/ipv4/1/

DELETE

Deleting a list of IPv4 objects in database

Deleting list of IPv4 objects and associated Vip Requests and relationships with Equipments URL:

7.14. IPv4 module 161

src Documentation, Release 3.4.2

/api/v3/ipv4/[ipv4_ids]/

where ipv4_ids are the identifiers of ipv4s desired to delete. It can use multiple id’s separated by semicolons. Doing
this, all Vip Request associated with IPv4 desired to be deleted will be deleted too. All associations made to equipments
will also be deleted.

Example with Parameter IDs:

One ID:

/api/v3/ipv4/1/

Many IDs:

/api/v3/ipv4/1;3;8/

/api/v3/ipv4/async/

POST

Creating list of IPv4 asynchronously

URL:

/api/v3/ipv4/async/

You can also create IPv4 objects asynchronously. It is only necessary to provide the same as in the respective syn-
chronous request (For more information about request body please check Synchronous IPv4 Creating). In this case,
when you make request NetworkAPI will create a task to fullfil it. You will not receive the identifier of each IPv4
desired to be created in response, but for each IPv4 you will receive an identifier for the created task. Since this is an
asynchronous request, it may be that IPv4 objects have been created after you receive the response. It is your task,
therefore, to consult the API through the available means to verify that your request have been met.

URL Example:

/api/v3/ipv4/async/

Response body:

[
{

"task_id": [string with 36 characters]
},...

]

Response Example for update of two IPv4 objects:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"
}

]

162 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

PUT

Updating list of IPv4 asynchronously

URL:

/api/v3/ipv4/async/

You can also update IPv4 objects asynchronously. It is only necessary to provide the same as in the respective syn-
chronous request (For more information about request body please check Synchronous IPv4 Updating). In this case,
when you make request NetworkAPI will create a task to fullfil it. You will not receive the identifier of each IPv4
desired to be updated in response, but for each IPv4 you will receive an identifier for the created task. Since this is an
asynchronous request, it may be that IPv4 objects have been updated after you receive the response. It is your task,
therefore, to consult the API through the available means to verify that your request have been met.

URL Example:

/api/v3/ipv4/async/

Response body:

[
{

"task_id": [string with 36 characters]
},...

]

Response Example for update of two IPv4 objects:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"
}

]

DELETE

Deleting list of IPv4 asynchronously

URL:

/api/v3/ipv4/async/

You can also delete IPv4 objects asynchronously. It is only necessary to provide the same as in the respective syn-
chronous request (For more information please check Synchronous IPv4 Deleting). In this case, when you make
request NetworkAPI will create a task to fullfil it. You will not receive an empty dict in response as occurs in the
synchronous request, but for each IPv4 you will receive an identifier for the created task. Since this is an asynchronous
request, it may be that IPv4 objects have been updated after you receive the response. It is your task, therefore, to
consult the API through the available means to verify that your request have been met.

URL Example:

/api/v3/ipv4/async/

7.14. IPv4 module 163

src Documentation, Release 3.4.2

Response body:

[
{

"task_id": [string with 36 characters]
},...

]

Response Example for update of two IPv4 objects:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"
}

]

IPv6 module

/api/v3/ipv6/

GET

Obtaining list of IPv6 objects

It is possible to specify in several ways fields desired to be retrieved in IPv6 module through the use of some GET
parameters. You are not required to use these parameters, but depending on your needs it can make your requests
faster if you are dealing with many objects and you need few fields. The following fields are available for IPv6 module
(hyperlinked or bold marked fields acts as foreign keys and can be expanded using __basic or __details when using
fields, include or exclude GET Parameters. Hyperlinked fields points to its documentation. Some expandable fields
that do not have documentation have its childs described here too because some of these childs are also expandable.):

• id

• ip_formated

• block1

• block2

• block3

• block4

• block5

• block6

• block7

• block8

• networkipv6

• description

• equipments

164 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

• vips

• server_pool_members

– id

– server_pool

– identifier

– ip

– ipv6

– priority

– weight

– limit

– port_real

– member_status

– last_status_update

– last_status_update_formated

– equipments

– equipment

Obtaining list of IPv6 objects through id’s URL:

/api/v3/ipv6/[ipv6_ids]/

where ipv6_ids are the identifiers of IPv6 objects desired to be retrieved. It can use multiple id’s separated by semi-
colons.

Example with Parameter IDs:

One ID:

/api/v3/ipv6/1/

Many IDs:

/api/v3/ipv6/1;3;8/

Obtaining list of IPv6 objects through extended search More information about Django QuerySet API, please
see:

:ref:‘Django QuerySet API reference <https://docs.djangoproject.com/el/1.10/ref/models/querysets/>‘_

URL:

/api/v3/ipv6/

GET Parameter:

search=[encoded dict]

Example:

7.15. IPv6 module 165

src Documentation, Release 3.4.2

/api/v3/ipv6/?search=[encoded dict]

Request body example:

{
"extends_search": [

{
"block1": "fefe",

},
{

"block1": "fdfd",
}

],
"start_record": 0,
"custom_search": "",
"end_record": 25,
"asorting_cols": [],
"searchable_columns": []

}

• When “search” is used, “total” property is also retrieved.

Using fields GET parameter

Through fields, you can specify desired fields.

Example with field id:

fields=id

Example with fields id, ip_formated and networkipv6:

fields=id,ip_formated,networkipv6

Using kind GET parameter

The IPv6 module also accepts the kind GET parameter. Only two values are accepted by kind: basic or details. For
each value it has a set of default fields. The difference between them is that in general details contains more fields than
basic, and the common fields between them are more detailed for details.

Example with basic option:

kind=basic

Response body with basic kind:

{

“ips”: [

{ “id”: <integer>, “ip_formated”: <string>, “networkipv6”: {

“id”: <integer>, “networkv6”: <string>, “mask_formated”: <string>, “broadcast”: <string>,
“vlan”: {

“id”: <integer>, “name”: <string>, “num_vlan”: <integer>

166 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

}, “network_type”: <integer>, “environmentvip”: <integer>

}, “description”: <string>

}

]

}

Example with details option:

kind=details

Response body with details kind:

{
"ips": [

{
"id": <integer>,
"ip_formated": <string>,
"block1": <string>,
"block2": <string>,
"block3": <string>,
"block4": <string>,
"block5": <string>,
"block6": <string>,
"block7": <string>,
"block8": <string>,
"networkipv6": {

"id": <integer>,
"block1": <string>,
"block2": <string>,
"block3": <string>,
"block4": <string>,
"block5": <string>,
"block6": <string>,
"block7": <string>,
"block8": <string>,
"prefix": <integer>,
"networkv6": <string>,
"mask1": <string>,
"mask2": <string>,
"mask3": <string>,
"mask4": <string>,
"mask5": <string>,
"mask6": <string>,
"mask7": <string>,
"mask8": <string>,
"mask_formated": <string>,
"vlan": {

"id": <integer>,
"name": <string>,
"num_vlan": <integer>,
"environment": <integer>,
"description": <string>,
"acl_file_name": <string>,
"acl_valida": <boolean>,
"acl_file_name_v6": <string>,
"acl_valida_v6": <boolean>,
"active": <boolean>,

7.15. IPv6 module 167

src Documentation, Release 3.4.2

"vrf": <string>,
"acl_draft": <string>,
"acl_draft_v6": <string>

},
"network_type": {

"id": <integer>,
"tipo_rede": <string>

},
"environmentvip": {

"id": <integer>,
"finalidade_txt": <string>,
"cliente_txt": <string>,
"ambiente_p44_txt": <string>,
"description": <string>

},
"active": <boolean>,
"dhcprelay": [

<string>,...
],
"cluster_unit": <string>

},
"description": <string>

}
]

}

Using fields and kind together

If fields is being used together kind, only the required fields will be retrieved instead of default.

Example with details kind and id field:

kind=details&fields=id

Default behavior without kind and fields

If neither kind nor fields are used in request, the response body will look like this:

Response body:

{
"ips":[

{
"id": <integer>,
"block1": <string>,
"block2": <string>,
"block3": <string>,
"block4": <string>,
"block5": <string>,
"block6": <string>,
"block7": <string>,
"block8": <string>,
"networkipv6": <integer>,
"description": <string>

}

168 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

]
}

POST

Creating list of IPv6 objects

URL:

/api/v3/ipv6/

Request body:

{
"ips": [{

"block1": <string>,
"block2": <string>,
"block3": <string>,
"block4": <string>,
"block5": <string>,
"block6": <string>,
"block7": <string>,
"block8": <string>,
"networkipv6": <integer>,
"description": <string>,
"equipments": [

{
"id": <integer>

},...
]

},..]
}

Request Example with only required fields:

{
"ips": [{

"networkipv6": 10
}]

}

Request Example with some more fields:

{
"ips": [{

"block1": "fdbe",
"block2": "fdbe",
"block3": "0000",
"block4": "0000",
"block5": "0000",
"block6": "0000",
"block7": "0000",
"block8": "0000",
"networkipv6": 2,
"equipments": [

{
"id": 3

7.15. IPv6 module 169

src Documentation, Release 3.4.2

},
{

"id": 4
}

]
}]

}

Through IPv6 POST route you can create one or more IPv6 objects. Only “networkipv6” field are required. You can
specify other fields such as:

• block1, block2, block3, block4, block5, block6, block7 and block8 - Are the octets of IPv6. Given a network,
API can provide to you an IPv6 Address automatically, but you can assign a IPv6 Address in a manually way.
If you specify some octet, you need to specify all the others.

• networkipv6 - This parameter is mandatory. It is the network to which new IP address will belong.

• description - Description of new IPv6.

• equipments - You can associate new IP address to one or more equipments.

At the end of POST request, it will be returned the identifiers of new IPv6 objects created.

Response Body:

[
{

"id": <integer>
},...

]

Response Example for two IPv6 objects created:

[
{

"id": 10
},
{

"id": 11
}

]

URL Example:

/api/v3/ipv6/

PUT

Updating list of IPv6 objects in database

URL:

/api/v3/ipv6/[ipv6_ids]/

where ipv6_ids are the identifiers of IPv6 objects. It can use multiple ids separated by semicolons.

Example with Parameter IDs:

One ID:

170 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

/api/v3/ipv6/1/

Many IDs:

/api/v3/ipv6/1;3;8/

Request body:

{
"ips": [{

"id": <integer>,
"description": <string>,
"equipments": [

{
"id": <integer>

},...
]

},..]
}

Request Example:

{
"ips": [{

"id": 1,
"description": "New description",
"equipments": [

{
"id": 5

},
{

"id": 6
}

]
}]

}

In IPv6 PUT request, you can only change description and associations with equipments.

• id - Identifier of IPv6 that will be changed. It’s mandatory.

• description - Description of new IPv6.

• equipments - You can create new associations with equipments when updating IPv6. Old associations will be
deleted even you don’t specify new associations to other equipments.

URL Example:

/api/v3/ipv6/1/

DELETE

Deleting a list of IPv6 objects in database

Deleting list of IPv6 objects and associated Vip Requests and relationships with Equipments URL:

/api/v3/ipv6/[ipv6_ids]/

7.15. IPv6 module 171

src Documentation, Release 3.4.2

where ipv6_ids are the identifiers of ipv6s desired to delete. It can use multiple id’s separated by semicolons. Doing
this, all Vip Request associated with IPv6 desired to be deleted will be deleted too. All associations made to equipments
will also be deleted.

Example with Parameter IDs:

One ID:

/api/v3/ipv6/1/

Many IDs:

/api/v3/ipv6/1;3;8/

/api/v3/ipv6/async/

POST

Creating list of IPv6 asynchronously

URL:

/api/v3/ipv6/async/

You can also create IPv6 objects asynchronously. It is only necessary to provide the same as in the respective syn-
chronous request (For more information about request body please check Synchronous IPv6 Creating). In this case,
when you make request NetworkAPI will create a task to fullfil it. You will not receive the identifier of each IPv6
desired to be created in response, but for each IPv6 you will receive an identifier for the created task. Since this is an
asynchronous request, it may be that IPv6 objects have been created after you receive the response. It is your task,
therefore, to consult the API through the available means to verify that your request have been met.

URL Example:

/api/v3/ipv6/async/

Response body:

[
{

"task_id": [string with 36 characters]
},...

]

Response Example for update of two IPv6 objects:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"
}

]

PUT

172 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

Updating list of IPv6 asynchronously

URL:

/api/v3/ipv6/async/

You can also update IPv6 objects asynchronously. It is only necessary to provide the same as in the respective syn-
chronous request (For more information about request body please check Synchronous IPv6 Updating). In this case,
when you make request NetworkAPI will create a task to fullfil it. You will not receive the identifier of each IPv6
desired to be updated in response, but for each IPv6 you will receive an identifier for the created task. Since this is an
asynchronous request, it may be that IPv6 objects have been updated after you receive the response. It is your task,
therefore, to consult the API through the available means to verify that your request have been met.

URL Example:

/api/v3/ipv6/async/

Response body:

[
{

"task_id": [string with 36 characters]
},...

]

Response Example for update of two IPv6 objects:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"
}

]

DELETE

Deleting list of IPv6 asynchronously

URL:

/api/v3/ipv6/async/

You can also delete IPv6 objects asynchronously. It is only necessary to provide the same as in the respective syn-
chronous request (For more information please check Synchronous IPv6 Deleting). In this case, when you make
request NetworkAPI will create a task to fullfil it. You will not receive an empty dict in response as occurs in the
synchronous request, but for each IPv6 you will receive an identifier for the created task. Since this is an asynchronous
request, it may be that IPv6 objects have been updated after you receive the response. It is your task, therefore, to
consult the API through the available means to verify that your request have been met.

URL Example:

/api/v3/ipv6/async/

Response body:

7.15. IPv6 module 173

src Documentation, Release 3.4.2

[
{

"task_id": [string with 36 characters]
},...

]

Response Example for update of two IPv6 objects:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"
}

]

Object Group Permissions module

/api/v3/object-group-perm/

GET

Obtaining list of Object Group Permissions

It is possible to specify in several ways fields desired to be retrieved in Object Group Permission module through the
use of some GET parameters. You are not required to use these parameters, but depending on your needs it can make
your requests faster if you are dealing with many objects and you need few fields. The following fields are available
for Object Group Permission module (hyperlinked or bold marked fields acts as foreign keys and can be expanded
using __basic or __details when using fields, include or exclude GET Parameters. Hyperlinked fields points to its
documentation):

• id

• user_group

• object_type

• object_value

• read

• write

• change_config

• delete

Obtaining list of Object Group Permissions through id’s URL:

/api/v3/object-group-perm/[object_group_perm_ids]/

where object_group_perm_ids are the identifiers of Object Group Permissions desired to be retrieved. It can use
multiple id’s separated by semicolons.

Example with Parameter IDs:

174 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

One ID:

/api/v3/object-group-perm/1/

Many IDs:

/api/v3/object-group-perm/1;3;8/

Obtaining list of Object Group Permissions through extended search More information about Django QuerySet
API, please see:

:ref:‘Django QuerySet API reference <https://docs.djangoproject.com/el/1.10/ref/models/querysets/>‘_

URL:

/api/v3/object-group-perm/

GET Parameter:

search=[encoded dict]

Example:

/api/v3/object-group-perm/?search=[encoded dict]

Request body example:

{
"extends_search": [{

"read": true
}],
"start_record": 0,
"custom_search": "",
"end_record": 25,
"asorting_cols": [],
"searchable_columns": []

}

• When “search” is used, “total” property is also retrieved.

Using fields GET parameter

Through fields, you can specify desired fields.

Example with field id:

fields=id

Example with fields id, object_type and read:

fields=id,object_type,read

Using kind GET parameter

The Object Group Permission module also accepts the kind GET parameter. Only two values are accepted by kind:
basic or details. For each value it has a set of default fields. The difference between them is that in general details
contains more fields than basic, and the common fields between them are more detailed for details.

7.16. Object Group Permissions module 175

src Documentation, Release 3.4.2

Example with basic option:

kind=basic

Response body with basic kind:

{
"ogps": [

{
"user_group": <integer>,
"object_type": <integer>,
"object_value": <integer>,
"read": <boolean>,
"write": <boolean>,
"change_config": <boolean>,
"delete": <boolean>

},...
]

}

Example with details option:

kind=details

Response body with details kind:

{
"ogps": [

{
"user_group": <integer>,
"object_type": <integer>,
"object_value": <integer>,
"read": <boolean>,
"write": <boolean>,
"change_config": <boolean>,
"delete": <boolean>

},...
]

}

Using fields and kind together

If fields is being used together kind, only the required fields will be retrieved instead of default.

Example with details kind and id field:

kind=details&fields=id

Default behavior without kind and fields

If neither kind nor fields are used in request, the response body will look like this:

Response body:

{
"ogps": [

{
"user_group": <integer>,

176 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

"object_type": <integer>,
"object_value": <integer>,
"read": <boolean>,
"write": <boolean>,
"change_config": <boolean>,
"delete": <boolean>

},...
]

}

POST

Creating list of Object Group Permissions objects

URL:

/api/v3/object-group-perm/

Request body:

{
"ogps": [{

"user_group": <integer>,
"object_type": <integer>,
"object_value": <integer>,
"read": <boolean>,
"write": <boolean>,
"change_config": <boolean>,
"delete": <boolean>

},..]
}

Request Example:

{
"ogps": [{

"user_group": 5,
"object_type": 3,
"object_value": 10,
"read": true,
"write": false,
"change_config": false,
"delete": false

}]
}

Through Object Group Permissions POST route you can assign permissions for individual objects to some user group.
Remember that individual permissions always prevail over general if it exists. All fields are required:

• user_group - It receives the identifier of some user group.

• object_type - It receives the identifier of some object type.

• object_value - It receives the identifier of some object value.

• read - Tell if the users of group identified by user_group will have read rights about specific object identified
by object_value and by its type identified by object_type.

7.16. Object Group Permissions module 177

src Documentation, Release 3.4.2

• write - Tell if the users of group identified by user_group will have write rights about specific object identified
by object_value and by its type identified by object_type.

• change_config - Tell if the users of group identified by user_group will have change config rights about specific
object identified by object_value and by its type identified by object_type.

• delete - Tell if the users of group identified by user_group will have delete rights about specific object identified
by object_value and by its type identified by object_type.

At the end of POST request, it will be returned the identifiers of new Object Group Permissions objects created.

Response Body:

[
{

"id": <integer>
},...

]

Response Example for two Object Group Permissions objects created:

[
{

"id": 10
},
{

"id": 11
}

]

URL Example:

/api/v3/object-group-perm/

PUT

Updating list of Object Group Permissions objects

URL:

/api/v3/object-group-perm/

Request body:

{
"ogps": [{

"id": <integer>,
"read": <boolean>,
"write": <boolean>,
"change_config": <boolean>,
"delete": <boolean>

},..]
}

Request Example:

{
"ogps": [{

"id": 5,
"read": true,

178 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

"write": false,
"change_config": false,
"delete": false

}]
}

Through Object Group Permissions PUT route you can change permissions assigned for individual objects to some
user group. Remember that individual permissions always prevail over general if it exists. Only id is required:

• id - Its the identifier fo the individual permission.

• read - Tell if the users of group identified by user_group will have read rights about specific object identified
by object_value and by its type identified by object_type.

• write - Tell if the users of group identified by user_group will have write rights about specific object identified
by object_value and by its type identified by object_type.

• change_config - Tell if the users of group identified by user_group will have change config rights about specific
object identified by object_value and by its type identified by object_type.

• delete - Tell if the users of group identified by user_group will have delete rights about specific object identified
by object_value and by its type identified by object_type.

At the end of PUT request, it will be returned the identifiers of Object Group Permissions objects updated.

Response Body:

[
{

"id": <integer>
},...

]

Response Example for two Object Group Permissions objects updated:

[
{

"id": 10
},
{

"id": 11
}

]

URL Example:

/api/v3/object-group-perm/

DELETE

Deleting a list of Object Group Permissions objects in database

Deleting list of Object Group Permissions objects URL:

/api/v3/object-group-perm/[object_group_perm_ids]/

where object_group_perm_ids are the identifiers of Object Group Permissions desired to delete. It can use multiple
id’s separated by semicolons.

Example with Parameter IDs:

7.16. Object Group Permissions module 179

src Documentation, Release 3.4.2

One ID:

/api/v3/object-group-perm/1/

Many IDs:

/api/v3/object-group-perm/1;3;8/

General Object Group Permissions module

/api/v3/object-group-perm-general/

GET

Obtaining list of General Object Group Permissions

It is possible to specify in several ways fields desired to be retrieved in General Object Group Permission module
through the use of some GET parameters. You are not required to use these parameters, but depending on your needs
it can make your requests faster if you are dealing with many objects and you need few fields. The following fields
are available for General Object Group Permission module (hyperlinked or bold marked fields acts as foreign keys
and can be expanded using __basic or __details when using fields, include or exclude GET Parameters. Hyperlinked
fields points to its documentation):

• id

• user_group

• object_type

• read

• write

• change_config

• delete

Obtaining list of General Object Group Permissions through id’s URL:

/api/v3/object-group-perm-general/[object_group_perm_general_ids]/

where object_group_perm_general_ids are the identifiers of General Object Group Permissions desired to be re-
trieved. It can use multiple id’s separated by semicolons.

Example with Parameter IDs:

One ID:

/api/v3/object-group-perm-general/1/

Many IDs:

/api/v3/object-group-perm-general/1;3;8/

180 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

Obtaining list of General Object Group Permissions through extended search More information about Django
QuerySet API, please see:

:ref:‘Django QuerySet API reference <https://docs.djangoproject.com/el/1.10/ref/models/querysets/>‘_

URL:

/api/v3/object-group-perm-general/

GET Parameter:

search=[encoded dict]

Example:

/api/v3/object-group-perm-general/?search=[encoded dict]

Request body example:

{
"extends_search": [{

"read": true,
}],
"start_record": 0,
"custom_search": "",
"end_record": 25,
"asorting_cols": [],
"searchable_columns": []

}

• When “search” is used, “total” property is also retrieved.

Using fields GET parameter

Through fields, you can specify desired fields.

Example with field id:

fields=id

Example with fields id, read and write:

fields=id,read,write

Using kind GET parameter

The General Object Group Permission module also accepts the kind GET parameter. Only two values are accepted
by kind: basic or details. For each value it has a set of default fields. The difference between them is that in general
details contains more fields than basic, and the common fields between them are more detailed for details.

Example with basic option:

kind=basic

Response body with basic kind:

{
"ogpgs": [

{

7.17. General Object Group Permissions module 181

src Documentation, Release 3.4.2

"id": <integer>,
"user_group": <integer>,
"object_type": <integer>,
"read": <boolean>,
"write": <boolean>,
"change_config": <boolean>,
"delete": <boolean>

},...
]

}

Example with details option:

kind=details

Response body with details kind:

{
"ogpgs": [

{
"id": <integer>,
"user_group": <integer>,
"object_type": <integer>,
"read": <boolean>,
"write": <boolean>,
"change_config": <boolean>,
"delete": <boolean>

},...
]

}

Using fields and kind together

If fields is being used together kind, only the required fields will be retrieved instead of default.

Example with details kind and id field:

kind=details&fields=id

Default behavior without kind and fields

If neither kind nor fields are used in request, the response body will look like this:

Response body:

{
"ogpgs": [

{
"id": <integer>,
"user_group": <integer>,
"object_type": <integer>,
"read": <boolean>,
"write": <boolean>,
"change_config": <boolean>,
"delete": <boolean>

},...

182 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

]
}

POST

Creating list of General Object Group Permissions objects

URL:

/api/v3/object-group-perm-general/

Request body:

{
"ogpgs": [{

"user_group": <integer>,
"object_type": <integer>,
"read": <boolean>,
"write": <boolean>,
"change_config": <boolean>,
"delete": <boolean>

},..]
}

Request Example:

{
"ogpgs": [{

"user_group": 5,
"object_type": 3
"read": true,
"write": false,
"change_config": false,
"delete": false

}]
}

Through General Object Group Permissions POST route you can assign permissions for a class of objects to some
user group. Remember that general permissions do not prevail over individual if it exists. All fields are required:

• user_group - It receives the identifier of some user group.

• object_type - It receives the identifier of some object type.

• read - Tell if the users of group identified by user_group will have read rights about objects of type identified
by object_type.

• write - Tell if the users of group identified by user_group will have write rights about objects of type identified
by object_type.

• change_config - Tell if the users of group identified by user_group will have change config rights about objects
of type identified by object_type.

• delete - Tell if the users of group identified by user_group will have delete rights about objects of type identified
by object_type.

At the end of POST request, it will be returned the identifiers of new General Object Group Permissions objects
created.

Response Body:

7.17. General Object Group Permissions module 183

src Documentation, Release 3.4.2

[
{

"id": <integer>
},...

]

Response Example for two General Object Group Permissions objects created:

[
{

"id": 10
},
{

"id": 11
}

]

URL Example:

/api/v3/object-group-perm-general/

PUT

Updating list of General Object Group Permissions objects

URL:

/api/v3/object-group-perm-general/

Request body:

{
"ogpgs": [{

"user_group": <integer>,
"object_type": <integer>,
"read": <boolean>,
"write": <boolean>,
"change_config": <boolean>,
"delete": <boolean>

},..]
}

Request Example:

{
"ogpgs": [{

"user_group": 5,
"object_type": 3
"read": true,
"write": false,
"change_config": false,
"delete": false

}]
}

Through General Object Group Permissions PUT route you can change permissions assigned for a class of objects to
some user group. Remember that general permissions do not prevail over individual if it exists. Only id is required:

184 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

• id - Its the identifier fo the general permission.

• read - Tell if the users of group identified by user_group will have read rights about objects of type identified
by object_type.

• write - Tell if the users of group identified by user_group will have write rights about objects of type identified
by object_type.

• change_config - Tell if the users of group identified by user_group will have change config rights about objects
of type identified by object_type.

• delete - Tell if the users of group identified by user_group will have delete rights about objects of type identified
by object_type.

At the end of PUT request, it will be returned the identifiers of General Object Group Permissions objects updated.

Response Body:

[
{

"id": <integer>
},...

]

Response Example for two General Object Group Permissions objects updated:

[
{

"id": 10
},
{

"id": 11
}

]

URL Example:

/api/v3/object-group-perm-general/

DELETE

Deleting a list of General Object Group Permissions objects in database

Deleting list of General Object Group Permissions objects URL:

/api/v3/object-group-perm-general/[object_group_perm_general_ids]/

where object_group_perm_general_ids are the identifiers of General Object Group Permissions desired to delete. It
can use multiple id’s separated by semicolons.

Example with Parameter IDs:

One ID:

/api/v3/object-group-perm-general/1/

Many IDs:

/api/v3/object-group-perm-general/1;3;8/

7.17. General Object Group Permissions module 185

src Documentation, Release 3.4.2

Object Type module

/api/v3/object-type/

GET

Obtaining list of Object Types

It is possible to specify in several ways fields desired to be retrieved in Object Type module through the use of some
GET parameters. You are not required to use these parameters, but depending on your needs it can make your requests
faster if you are dealing with many objects and you need few fields. The following fields are available for Object Type
module (hyperlinked or bold marked fields acts as foreign keys and can be expanded using __basic or __details when
using fields, include or exclude GET Parameters. Hyperlinked fields points to its documentation):

• id

• name

Obtaining list of Object Types through id’s URL:

/api/v3/object-type/[object_type_ids]/

where object_type_ids are the identifiers of Object Types desired to be retrieved. It can use multiple id’s separated by
semicolons.

Example with Parameter IDs:

One ID:

/api/v3/object-type/1/

Many IDs:

/api/v3/object-type/1;3;8/

Obtaining list of Object Types through extended search More information about Django QuerySet API, please
see:

:ref:‘Django QuerySet API reference <https://docs.djangoproject.com/el/1.10/ref/models/querysets/>‘_

URL:

/api/v3/object-type/

GET Parameter:

search=[encoded dict]

Example:

/api/v3/object-type/?search=[encoded dict]

Request body example:

{
"extends_search": [{

"name": "Vrf",

186 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

}],
"start_record": 0,
"custom_search": "",
"end_record": 25,
"asorting_cols": [],
"searchable_columns": []

}

• When “search” is used, “total” property is also retrieved.

Using fields GET parameter

Through fields, you can specify desired fields.

Example with field id:

fields=id

Example with fields id and name:

fields=id,name

Using kind GET parameter

The Object Type module also accepts the kind GET parameter. Only two values are accepted by kind: basic or details.
For each value it has a set of default fields. The difference between them is that in general details contains more fields
than basic, and the common fields between them are more detailed for details.

Example with basic option:

kind=basic

Response body with basic kind:

{
"ots": [

{
"id": <integer>,
"name": <string>

},...
]

}

Example with details option:

kind=details

Response body with details kind:

{
"ots": [

{
"id": <integer>,
"name": <string>

},...
]

}

7.18. Object Type module 187

src Documentation, Release 3.4.2

Using fields and kind together

If fields is being used together kind, only the required fields will be retrieved instead of default.

Example with details kind and id field:

kind=details&fields=id

Default behavior without kind and fields

If neither kind nor fields are used in request, the response body will look like this:

Response body:

{
"ots": [

{
"id": <integer>,
"name": <string>

},...
]

}

Vrf module

/api/v3/vrf/

GET

Obtaining list of Vrfs

It is possible to specify in several ways fields desired to be retrieved in Vrf module through the use of some GET
parameters. You are not required to use these parameters, but depending on your needs it can make your requests
faster if you are dealing with many objects and you need few fields. The following fields are available for Vrf module
(hyperlinked or bold marked fields acts as foreign keys and can be expanded using __basic or __details when using
fields, include or exclude GET Parameters. Hyperlinked fields points to its documentation):

• id

• internal_name

• vrf

Obtaining list of Vrfs through id’s URL:

/api/v3/vrf/[vrf_ids]/

where vrf_ids are the identifiers of Vrfs desired to be retrieved. It can use multiple id’s separated by semicolons.

Example with Parameter IDs:

One ID:

/api/v3/vrf/1/

188 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

Many IDs:

/api/v3/vrf/1;3;8/

Obtaining list of Vrfs through extended search More information about Django QuerySet API, please see:

:ref:‘Django QuerySet API reference <https://docs.djangoproject.com/el/1.10/ref/models/querysets/>‘_

URL:

/api/v3/vrf/

GET Parameter:

search=[encoded dict]

Example:

/api/v3/vrf/?search=[encoded dict]

Request body example:

{
"extends_search": [{

"vrf__contains": "Default",
}],
"start_record": 0,
"custom_search": "",
"end_record": 25,
"asorting_cols": [],
"searchable_columns": []

}

• When “search” is used, “total” property is also retrieved.

Using fields GET parameter

Through fields, you can specify desired fields.

Example with field id:

fields=id

Example with fields id and internal_name:

fields=id,internal_name

Using kind GET parameter

The Vrf module also accepts the kind GET parameter. Only two values are accepted by kind: basic or details. For
each value it has a set of default fields. The difference between them is that in general details contains more fields than
basic, and the common fields between them are more detailed for details.

Example with basic option:

kind=basic

Response body with basic kind:

7.19. Vrf module 189

src Documentation, Release 3.4.2

{
"vrfs": [

{
"id": <integer>,
"internal_name": <string>,
"vrf": <string>

},...
]

}

Example with details option:

kind=details

Response body with details kind:

{
"vrfs": [

{
"id": <integer>,
"internal_name": <string>,
"vrf": <string>

},...
]

}

Using fields and kind together

If fields is being used together kind, only the required fields will be retrieved instead of default.

Example with details kind and id field:

kind=details&fields=id

Default behavior without kind and fields

If neither kind nor fields are used in request, the response body will look like this:

Response body:

{
"vrfs": [

{
"id": <integer>,
"internal_name": <string>,
"vrf": <string>

},...
]

}

POST

Creating list of Vrf objects

URL:

190 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

/api/v3/vrf/

Request body:

{
"vrfs": [{

"vrf": <string>,
"internal_name": <string>

},..]
}

Request Example:

{
"vrfs": [{

"vrf": "BEVrf",
"internal_name": "BEVrf"

}]
}

Through Vrf POST route you can create one or more Vrf objects. All fields are required:

• vrf, internal_name - Are the names that represent the Vrf.

At the end of POST request, it will be returned the identifiers of new Vrf objects created.

Response Body:

[
{

"id": <integer>
},...

]

Response Example for two Vrf objects created:

[
{

"id": 10
},
{

"id": 11
}

]

URL Example:

/api/v3/vrf/

PUT

Updating list of Vrf objects

URL:

/api/v3/vrf/

Request body:

7.19. Vrf module 191

src Documentation, Release 3.4.2

{
"vrfs": [{

"id": <integer>,
"vrf": <string>,
"internal_name": <string>

},..]
}

Request Example:

{
"vrfs": [{

"id": 1,
"vrf": "BEVrf",
"internal_name": "BEVrf"

}]
}

Through Vrf PUT route you can update one or more Vrf objects. All fields are required:

• id - Identifier of Vrf desired to update.

• vrf, internal_name - Are the names that represent the Vrf.

At the end of PUT request, it will be returned the identifiers of Vrf objects update.

Response Body:

[
{

"id": <integer>
},...

]

Response Example for two Vrf objects updated:

[
{

"id": 10
},
{

"id": 11
}

]

URL Example:

/api/v3/vrf/

DELETE

Deleting a list of Vrf objects in database

Deleting list of Vrf objects and relationships with Equipments URL:

/api/v3/vrf/[vrf_ids]/

where vrf_ids are the identifiers of Vrf’s desired to delete. It can use multiple id’s separated by semicolons. Doing
this, all associations made to equipments will also be deleted. You can’t delete Vrf if it’s used at some Environment
or have relationship with Vlan and Equipment at same time.

192 Chapter 7. Using GloboNetworkAPI V3

src Documentation, Release 3.4.2

Example with Parameter IDs:

One ID:

/api/v3/vrf/1/

Many IDs:

/api/v3/vrf/1;3;8/

Task module

/api/v3/task/

GET

How can I know the state of an asynchronous request?

URL:

/api/v3/task/[task_id]/

where task_id is the generated identifier for some asynchronous task. This route only accepts one task_id at a time.

Example with Parameter ID:

/api/v3/task/f8bb9ecf-ff40-4070-b379-6dcad7c8488a/

A task can assume the five status listed below. One way to track progress of some task is pooling NetworkAPI through
this route. Once the task reaches SUCCESS, FAILURE or REVOKED status, you can stop to pooling NetworkAPI
because your task have finished:

• PENDING - The task not yet run or status is unknown.

• SUCCESS - The task finished successfully.

• PROGRESS - The task is currently running.

• FAILURE - The job have failed.

• REVOKED - The job was cancelled (e.g. For some unknown reason, the worker that was attending the task was
killed in a non-graceful way and therefore task was interrupted at the middle).

When task reaches SUCCESS or FAILURE status, you can know the result for your task through the “result” key
returned by Task Module.

Response body when PENDING status is returned:

{
"status": [string],
"task_id": [string],

}

Response body when SUCCESS, PROGRESS, FAILURE or REVOKED status is returned:

{
"status": [string],
"task_id": [string],
"result": [dict]

}

7.20. Task module 193

src Documentation, Release 3.4.2

194 Chapter 7. Using GloboNetworkAPI V3

CHAPTER 8

Using GloboNetworkAPI V4

As module

/api/v4/as/

GET

Obtaining list of AS’s

It is possible to specify in several ways fields desired to be retrieved in AS module through the use of some GET
parameters. You are not required to use these parameters, but depending on your needs it can make your requests
faster if you are dealing with many objects and you need few fields. The following fields are available for AS module
(hyperlinked or bold marked fields acts as foreign keys and can be expanded using __basic or __details when using
fields, include or exclude GET Parameters. Hyperlinked fields points to its documentation. Some expandable fields
that do not have documentation have its childs described here too because some of these childs are also expandable.):

• id

• name

• description

• equipments

– id_as

– equipment

Obtaining list of AS’s through id’s URL:

/api/v4/as/[as_ids]/

where as_ids are the identifiers of AS’s desired to be retrieved. It can use multiple id’s separated by semicolons.

Example with Parameter IDs:

One ID:

/api/v4/as/1/

Many IDs:

195

src Documentation, Release 3.4.2

/api/v4/as/1;3;8/

Obtaining list of AS’s through extended search More information about Django QuerySet API, please see:

:ref:‘Django QuerySet API reference <https://docs.djangoproject.com/el/1.10/ref/models/querysets/>‘_

URL:

/api/v4/as/

GET Parameter:

search=[encoded dict]

Example:

/api/v4/as/?search=[encoded dict]

Request body example:

{
"extends_search": [{

"name": "AS_BGP"
}],
"start_record": 0,
"custom_search": "",
"end_record": 25,
"asorting_cols": [],
"searchable_columns": []

}

• When “search” is used, “total” property is also retrieved.

Using fields GET parameter

Through fields, you can specify desired fields.

Example with field id:

fields=id

Example with fields id, name and description:

fields=id,name,description

Using kind GET parameter

The AS module also accepts the kind GET parameter. Only two values are accepted by kind: basic or details. For
each value it has a set of default fields. The difference between them is that in general details contains more fields than
basic, and the common fields between them are more detailed for details. For example, the field equipment_type for
basic will contain only the identifier and for details will contain also the description.

Example with basic option:

kind=basic

Response body with basic kind:

196 Chapter 8. Using GloboNetworkAPI V4

src Documentation, Release 3.4.2

{
"asns": [

{
"id": <integer>,
"name": <string>,
"description": <string>,
"equipments": [

{
"equipment": {

"id": <integer>,
"name": <string>

}
},...

]
},...

]
}

Example with details option:

kind=details

Response body with details kind:

{
"asns": [

{
"id": <integer>,
"name": <string>,
"description": <string>,
"equipments": [

{
"equipment": {

"id": <integer>,
"name": <string>,
"maintenance": <boolean>,
"equipment_type": {

"id": <integer>,
"equipment_type": <string>

},
"model": {

"id": <integer>,
"name": <string>

},
"ipsv4": [

{
"ip": {

"id": <integer>,
"oct4": <integer>,
"oct3": <integer>,
"oct2": <integer>,
"oct1": <integer>,
"networkipv4": <integer>,
"description": <string>

},
"virtual_interface": {

"id": <integer>,
"name": <string>,
"vrf": {

8.1. As module 197

src Documentation, Release 3.4.2

"id": <integer>,
"internal_name": <string>,
"vrf": <string>

}
}

},...
],
"ipsv6": [

{
"ip": {

"id": <integer>,
"block1": <string>,
"block2": <string>,
"block3": <string>,
"block4": <string>,
"block5": <string>,
"block6": <string>,
"block7": <string>,
"block8": <string>,
"networkipv6": <integer>,
"description": <string>

},
"virtual_interface": {

"id": <integer>,
"name": <string>,
"vrf": {

"id": <integer>,
"internal_name": <string>,
"vrf": <string>

}
}

},...
],
"environments": [

{
"is_router": <boolean>,
"is_controller": <boolean>,
"environment": {

"id": <integer>,
"name": <string>,
"grupo_l3": <integer>,
"ambiente_logico": <integer>,
"divisao_dc": <integer>,
"filter": <integer>,
"acl_path": <string>,
"ipv4_template": <string>,
"ipv6_template": <string>,
"link": <string>,
"min_num_vlan_1": <integer>,
"max_num_vlan_1": <integer>,
"min_num_vlan_2": <integer>,
"max_num_vlan_2": <integer>,
"default_vrf": <integer>,
"father_environment": <reference-to:environment>,
"sdn_controllers": null

}
},...

],

198 Chapter 8. Using GloboNetworkAPI V4

src Documentation, Release 3.4.2

"groups": [
{

"id": <integer>,
"name": <string>

},...
],
"id_as": {

"id": <integer>,
"name": <string>,
"description": <string>

}
}

}
]

}
]

}

Using fields and kind together

If fields is being used together kind, only the required fields will be retrieved instead of default.

Example with details kind and id field:

kind=details&fields=id

Default behavior without kind and fields

If neither kind nor fields are used in request, the response body will look like this:

Response body:

{
"asns": [

{
"id": <integer>,
"name": <string>,
"description": <string>

},...
]

}

POST

Creating list of AS’s

URL:

/api/v4/as/

Request body:

{
"asns": [

{

8.1. As module 199

src Documentation, Release 3.4.2

"name": <string>,
"description": <string>

},...
]

}

• Both name and description fields are required.

URL Example:

/api/v4/as/

PUT

Updating list of AS’s

URL:

/api/v4/as/[as_ids]/

where as_ids are the identifiers of AS’s. It can use multiple ids separated by semicolons.

Example with Parameter IDs:

One ID:

/api/v4/as/1/

Many IDs:

/api/v4/as/1;3;8/

Request body:

{
"asns": [

{
"id": <integer>,
"name": <string>,
"description": <string>

},...
]

}

• id field is mandatory. The other fields are not mandatory, but if they don’t provided, they will be replaced by
null.

URL Example:

/api/v4/as/1/

DELETE

Deleting list of AS’s in database

Deleting list of AS’s URL:

200 Chapter 8. Using GloboNetworkAPI V4

src Documentation, Release 3.4.2

/api/v4/as/[as_ids]/

where as_ids are the identifiers of AS’s desired to delete. It can use multiple id’s separated by semicolons. If AS is
associated with some Equipment, it cannot be deleted until this relationship be removed.

Example with Parameter IDs:

One ID:

/api/v4/as/1/

Many IDs:

/api/v4/as/1;3;8/

Equipment module

/api/v4/equipment/

GET

Obtaining list of Equipments

It is possible to specify in several ways fields desired to be retrieved in Equipment module through the use of some GET
parameters. You are not required to use these parameters, but depending on your needs it can make your requests faster
if you are dealing with many objects and you need few fields. The following fields are available for Equipment module
(hyperlinked or bold marked fields acts as foreign keys and can be expanded using __basic or __details when using
fields, include or exclude GET Parameters. Hyperlinked fields points to its documentation. Some expandable fields
that do not have documentation have its childs described here too because some of these childs are also expandable.):

• id

• name

• maintenance

• equipment_type

• model

– name

– brand

* id

* name

• ipsv4

– ip

– virtual-interface

• ipsv6

– ip

– virtual-interface

• environments

8.2. Equipment module 201

src Documentation, Release 3.4.2

– environment

– equipment

• groups

• id_as

Obtaining list of Equipments through some Optional GET Parameters URL:

/api/v4/equipment/

Optional GET Parameters:

rights_write=[string]
environment=[integer]
ipv4=[string]
ipv6=[string]
is_router=[integer]
name=[string]

Where:

• rights_write must receive 1 if desired to obtain the equipments where at least one group to which the user
logged in is related has write access.

• environment is some environment identifier.

• ipv4 and ipv6 are IP’s must receive some valid IP Adresss.

• is_router must receive 1 if only router equipments are desired, 0 if only equipments that is not routers are
desired.

• name is a unique string that only one equipment has.

Example:

With environment and ipv4 GET Parameter:

/api/v4/equipment/?ipv4=192.168.0.1&environment=5

Obtaining list of Equipments through id’s URL:

/api/v4/equipment/[equipment_ids]/

where equipment_ids are the identifiers of Equipments desired to be retrieved. It can use multiple id’s separated by
semicolons.

Example with Parameter IDs:

One ID:

/api/v4/equipment/1/

Many IDs:

/api/v4/equipment/1;3;8/

202 Chapter 8. Using GloboNetworkAPI V4

src Documentation, Release 3.4.2

Obtaining list of Equipments through extended search More information about Django QuerySet API, please
see:

:ref:‘Django QuerySet API reference <https://docs.djangoproject.com/el/1.10/ref/models/querysets/>‘_

URL:

/api/v4/equipment/

GET Parameter:

search=[encoded dict]

Example:

/api/v4/equipment/?search=[encoded dict]

Request body example:

{
"extends_search": [{

"maintenance": false,
"tipo_equipamento": 1

}],
"start_record": 0,
"custom_search": "",
"end_record": 25,
"asorting_cols": [],
"searchable_columns": []

}

• When “search” is used, “total” property is also retrieved.

Using fields GET parameter

Through fields, you can specify desired fields.

Example with field id:

fields=id

Example with fields id, name and maintenance:

fields=id,name,maintenance

Using kind GET parameter

The Equipment module also accepts the kind GET parameter. Only two values are accepted by kind: basic or details.
For each value it has a set of default fields. The difference between them is that in general details contains more fields
than basic, and the common fields between them are more detailed for details. For example, the field equipment_type
for basic will contain only the identifier and for details will contain also the description.

Example with basic option:

kind=basic

Response body with basic kind:

8.2. Equipment module 203

src Documentation, Release 3.4.2

{
"equipments": [

{
"id": <integer>,
"name": <string>

}, ...
]

}

Example with details option:

kind=details

Response body with details kind:

{
"equipments": [

{
"id": <integer>,
"name": <string>,
"maintenance": <boolean>,
"equipment_type": {

"id": <integer>,
"equipment_type": <string>

},
"model": {

"id": <integer>,
"name": <string>

},
"ipsv4": [

{
"ip": {

"id": <integer>,
"oct4": <integer>,
"oct3": <integer>,
"oct2": <integer>,
"oct1": <integer>,
"networkipv4": {

"id": <integer>,
"oct1": <integer>,
"oct2": <integer>,
"oct3": <integer>,
"oct4": <integer>,
"prefix": <integer>,
"networkv4": <string>,
"mask_oct1": <integer>,
"mask_oct2": <integer>,
"mask_oct3": <integer>,
"mask_oct4": <integer>,
"mask_formated": <string>,
"broadcast": <string>,
"vlan": {

"id": <integer>,
"name": <string>,
"num_vlan": <integer>,
"environment": <integer>,
"description": <string>,
"acl_file_name": <string>,
"acl_valida": <boolean>,

204 Chapter 8. Using GloboNetworkAPI V4

src Documentation, Release 3.4.2

"acl_file_name_v6": <string>,
"acl_valida_v6": <boolean>,
"active": <boolean>,
"vrf": <string>,
"acl_draft": <string>,
"acl_draft_v6": <string>

},
"network_type": {

"id": <integer>,
"tipo_rede": <string>

},
"environmentvip": {

"id": <integer>,
"finalidade_txt": <string>,
"cliente_txt": <string>,
"ambiente_p44_txt": <string>,
"description": <string>

},
"active": <boolean>,
"dhcprelay": [

{
"id": <integer>,
"ipv4": <integer>,
"networkipv4": <integer>

}, ...
],
"cluster_unit": <string>

},
"description": <string>

},
"virtual_interface": {

"id": <integer>,
"name": <string>,
"vrf": {

"id": <integer>,
"internal_name": <string>,
"vrf": <string>

}
}

}, ...
],
"ipsv6": [

{
"ip": {

"id": 1,
"block1": <string>,
"block2": <string>,
"block3": <string>,
"block4": <string>,
"block5": <string>,
"block6": <string>,
"block7": <string>,
"block8": <string>,
"networkipv6": {

"id": <integer>,
"block1": <string>,
"block2": <string>,
"block3": <string>,

8.2. Equipment module 205

src Documentation, Release 3.4.2

"block4": <string>,
"block5": <string>,
"block6": <string>,
"block7": <string>,
"block8": <string>,
"prefix": <integer>,
"networkv6": <string>,
"mask1": <string>,
"mask2": <string>,
"mask3": <string>,
"mask4": <string>,
"mask5": <string>,
"mask6": <string>,
"mask7": <string>,
"mask8": <string>,
"mask_formated": <string>,
"vlan": {

"id": <integer>,
"name": <string>,
"num_vlan": <integer>,
"environment": <integer>,
"description": <string>,
"acl_file_name": <string>,
"acl_valida": <boolean>,
"acl_file_name_v6": <string>,
"acl_valida_v6": <boolean>,
"active": <boolean>,
"vrf": <integer>,
"acl_draft": <string>,
"acl_draft_v6": <string>

},
"network_type": {

"id": <integer>,
"tipo_rede": <string>

},
"environmentvip": {

"id": <integer>,
"finalidade_txt": <string>,
"cliente_txt": <string>,
"ambiente_p44_txt": <string>,
"description": <string>

},
"active": <boolean>,
"dhcprelay": [

{
"id": <integer>,
"ipv6": <integer>,
"networkipv6": <integer>

}, ...
],
"cluster_unit": <string>

},
"description": <string>

},
"virtual_interface": {

"id": <integer>,
"name": <string>,
"vrf": {

206 Chapter 8. Using GloboNetworkAPI V4

src Documentation, Release 3.4.2

"id": <integer>,
"internal_name": <string>,
"vrf": <string>

}
}

}, ...
],
"environments": [

{
"is_router": <boolean>,
"is_controller": <boolean>,
"environment": {

"id": <integer>,
"name": <string>,
"grupo_l3": <integer>,
"ambiente_logico": <integer>,
"divisao_dc": <integer>,
"filter": <integer>,
"acl_path": <string>,
"ipv4_template": <string>,
"ipv6_template": <string>,
"link": <string>,
"min_num_vlan_1": <integer>,
"max_num_vlan_1": <integer>,
"min_num_vlan_2": <integer>,
"max_num_vlan_2": <integer>,
"default_vrf": <integer>,
"father_environment": <recurrence-to:environment>,
"sdn_controllers": null

}
}, ...

],
"groups": [

{
"id": <integer>,
"name": <string>

}, ...
],
"id_as": {

"id": <integer>,
"name": <string>,
"description": <string>

}
}, ...

]
}

Using fields and kind together

If fields is being used together kind, only the required fields will be retrieved instead of default.

Example with details kind and id field:

kind=details&fields=id

8.2. Equipment module 207

src Documentation, Release 3.4.2

Default behavior without kind and fields

If neither kind nor fields are used in request, the response body will look like this:

Response body:

{
"equipments": [

{
"id": <integer>,
"name": <string>,
"maintenance": <boolean>,
"equipment_type": <integer>,
"model": <integer>

}, ...
]

}

POST

Creating list of equipments

URL:

/api/v4/equipment/

Request body:

{
"equipments": [

{
"environments": [

{
"id": <integer>,
"is_router": <boolean>,
"is_controller": <boolean>

}, ...
],
"equipment_type": <integer>,
"groups": [

{
"id": <integer>

}, ...
],
"ipsv4": [

{
"ipv4": {

"id": <integer>
},
"virtual_interface": {

"id": <integer>
}

}, ...
],
"ipsv6": [

{
"ipv6": {

208 Chapter 8. Using GloboNetworkAPI V4

src Documentation, Release 3.4.2

"id": <integer>
},
"virtual_interface": {

"id": <integer>
}

}, ...
],
"maintenance": <boolean>,
"model": <integer>,
"name": <string>,
"id_as": <integer>

}, ...
]

}

• environments - You can associate environments to new Equipment and specify if your equipment in each
association will act as a router for specific environment.

• equipment_type - You must specify if your Equipment is a Switch, a Router, a Load Balancer...

• groups - You can associate the new Equipment to one or more groups of Equipments.

• ipv4 - You can assign to the new Equipment how many IPv4 addresses is needed.

• ipv6 - You can assign to the new Equipment how many IPv6 addresses is needed.

• maintenance - You must assign to the new Equipment a flag saying if the Equipment is or not in maintenance
mode.

• model - You must assign to the Equipment some model (Cisco, Dell, HP, F5, ...).

• name - You must assign to the Equipment any name.

URL Example:

/api/v4/equipment/

PUT

Updating list of equipments in database

URL:

/api/v4/equipment/[equipment_ids]/

where equipment_ids are the identifiers of equipments. It can use multiple ids separated by semicolons.

Example with Parameter IDs:

One ID:

/api/v4/equipment/1/

Many IDs:

/api/v4/equipment/1;3;8/

Request body:

8.2. Equipment module 209

src Documentation, Release 3.4.2

{
"equipments": [

{
"id": <integer>,
"environments": [

{
"id": <integer>,
"is_router": <boolean>,
"is_controller": <boolean>

}, ...
],
"equipment_type": <integer>,
"groups": [

{
"id": <integer>

}, ...
],
"ipsv4": [

{
"ipv4": {

"id": <integer>
},
"virtual_interface": {

"id": <integer>
}

}, ...
],
"ipsv6": [

{
"ipv6": {

"id": <integer>
},
"virtual_interface": {

"id": <integer>
}

}, ...
],
"maintenance": <boolean>,
"model": <integer>,
"name": <string>,
"id_as": <integer>

}, ...
]

}

• id - Specify what Equipment you want to change.

• environments - You can associate environments to new Equipment and specify if your equipment in each
association will act as a router for specific environment and if it will act as a SDN controller in this particular
environment.

• equipment_type - You must specify if your Equipment is a Switch, a Router, a Load Balancer...

• groups - You can associate the new Equipment to one or more groups of Equipments.

• ipsv4 - You can assign to the new Equipment how many IPv4 addresses are needed and for each association
between IPv4 and Equipment you can set a Virtual Interface.

• ipsv6 - You can assign to the new Equipment how many IPv6 addresses are needed and for each association
between IPv6 and Equipment you can set a Virtual Interface.

210 Chapter 8. Using GloboNetworkAPI V4

src Documentation, Release 3.4.2

• maintenance - You must assign to the new Equipment a flag saying if the Equipment is or not in maintenance
mode.

• model - You must assign to the Equipment some model (Cisco, Dell, HP, F5, ...).

• name - You must assign to the Equipment any name.

• id_as - You can associate the Equipment with one ASN.

Remember that if you don’t provide the not mandatory fields, actual information (e.g. associations between Equipment
and Environments) will be deleted. The effect of PUT Request is always to replace actual data by what you provide
into fields in this type of request.

URL Example:

/api/v4/equipment/1/

DELETE

Deleting a list of equipments in database

Deleting list of equipments and all relationships URL:

/api/v4/equipment/[equipment_ids]/

where equipment_ids are the identifiers of equipments desired to delete. It can use multiple id’s separated by semi-
colons. Doing this, all associations between Equipments and IP addresses, Access, Script (Roteiro), Interface, En-
vironment and Group will be deleted. Equipments that have a relationship at same time between IPv4 and Virtual
Interface objects or IPv6 and Virtual Interface objects can’t be deleted.

Example with Parameter IDs:

One ID:

/api/v4/equipment/1/

Many IDs:

/api/v4/equipment/1;3;8/

IPv4 module

/api/v3/ipv4/

GET

Obtaining list of IPv4 objects

It is possible to specify in several ways fields desired to be retrieved in IPv4 module through the use of some GET
parameters. You are not required to use these parameters, but depending on your needs it can make your requests
faster if you are dealing with many objects and you need few fields. The following fields are available for IPv4 module
(hyperlinked or bold marked fields acts as foreign keys and can be expanded using __basic or __details when using
fields, include or exclude GET Parameters. Hyperlinked fields points to its documentation. Some expandable fields
that do not have documentation have its childs described here too because some of these childs are also expandable.):

• id

8.3. IPv4 module 211

src Documentation, Release 3.4.2

• ip_formated

• oct1

• oct2

• oct3

• oct4

• networkipv4

• description

• equipments

– equipment

– virtual-interface

• vips

• server_pool_members

– id

– server_pool

– identifier

– ip

– ipv6

– priority

– weight

– limit

– port_real

– member_status

– last_status_update

– last_status_update_formated

– equipments

– equipment

Obtaining list of IPv4 objects through id’s URL:

/api/v4/ipv4/[ipv4_ids]/

where ipv4_ids are the identifiers of IPv4 objects desired to be retrieved. It can use multiple id’s separated by semi-
colons.

Example with Parameter IDs:

One ID:

/api/v4/ipv4/1/

Many IDs:

212 Chapter 8. Using GloboNetworkAPI V4

src Documentation, Release 3.4.2

/api/v4/ipv4/1;3;8/

Obtaining list of IPv4 objects through extended search More information about Django QuerySet API, please
see:

:ref:‘Django QuerySet API reference <https://docs.djangoproject.com/el/1.10/ref/models/querysets/>‘_

URL:

/api/v4/ipv4/

GET Parameter:

search=[encoded dict]

Example:

/api/v4/ipv4/?search=[encoded dict]

Request body example:

{
"extends_search": [

{
"oct1": 10,

},
{

"oct1": 172,
}

],
"start_record": 0,
"custom_search": "",
"end_record": 25,
"asorting_cols": [],
"searchable_columns": []

}

• When “search” is used, “total” property is also retrieved.

Using fields GET parameter

Through fields, you can specify desired fields.

Example with field id:

fields=id

Example with fields id, ip_formated and networkipv4:

fields=id,ip_formated,networkipv4

Using kind GET parameter

The IPv4 module also accepts the kind GET parameter. Only two values are accepted by kind: basic or details. For
each value it has a set of default fields. The difference between them is that in general details contains more fields than
basic, and the common fields between them are more detailed for details.

8.3. IPv4 module 213

src Documentation, Release 3.4.2

Example with basic option:

kind=basic

Response body with basic kind:

{
"ips": [

{
"id": <integer>,
"ip_formated": <string>,
"networkipv4": {

"id": <integer>,
"networkv4": <string>,
"mask_formated": <string>,
"broadcast": <string>,
"vlan": {

"id": <integer>,
"name": <string>,
"num_vlan": <integer>

},
"network_type": <integer>,
"environmentvip": <integer>

},
"description": <string>

}
]

}

Example with details option:

kind=details

Response body with details kind:

{
"ips": [

{
"id": <integer>,
"ip_formated": <string>,
"oct4": <integer>,
"oct3": <integer>,
"oct2": <integer>,
"oct1": <integer>,
"networkipv4": {

"id": <integer>,
"oct1": <integer>,
"oct2": <integer>,
"oct3": <integer>,
"oct4": <integer>,
"prefix": <integer>,
"networkv4": <string>,
"mask_oct1": <integer>,
"mask_oct2": <integer>,
"mask_oct3": <integer>,
"mask_oct4": <integer>,
"mask_formated": <string>,
"broadcast": <string>,
"vlan": {

"id": <integer>,

214 Chapter 8. Using GloboNetworkAPI V4

src Documentation, Release 3.4.2

"name": <string>,
"num_vlan": <integer>,
"environment": <integer>,
"description": <string>,
"acl_file_name": <string>,
"acl_valida": <boolean>,
"acl_file_name_v6": <string>,
"acl_valida_v6": <boolean>,
"active": <boolean>,
"vrf": <string>,
"acl_draft": <string>,
"acl_draft_v6": <string>

},
"network_type": {

"id": <integer>,
"tipo_rede": <string>

},
"environmentvip": {

"id": <integer>,
"finalidade_txt": <string>,
"cliente_txt": <string>,
"ambiente_p44_txt": <string>,
"description": <string>

},
"active": <boolean>,
"dhcprelay": [

<string>,...
],
"cluster_unit": <string>

},
"description": <string>,
"equipments": [

{
"equipment": {

"id": <integer>,
"name": <string>,
"maintenance": <boolean>,
"equipment_type": {

"id": <integer>,
"equipment_type": <string>

},
"model": {

"id": <integer>,
"name": <string>

},
"environments": [

{
"is_router": <boolean>,
"is_controller": <boolean>,
"environment": {

"id": <integer>,
"name": <string>,
"grupo_l3": <integer>,
"ambiente_logico": <integer>,
"divisao_dc": <integer>,
"filter": <integer>,
"acl_path": <string>,
"ipv4_template": <string>,

8.3. IPv4 module 215

src Documentation, Release 3.4.2

"ipv6_template": <string>,
"link": <string>,
"min_num_vlan_1": <integer>,
"max_num_vlan_1": <integer>,
"min_num_vlan_2": <integer>,
"max_num_vlan_2": <integer>,
"default_vrf": <integer>,
"father_environment": <recurrence-to:environment>,
"sdn_controllers": null

}
}

],
"groups": [

{
"id": <integer>,
"name": <string>

}
],
"id_as": {

"id": <integer>,
"name": <string>,
"description": <string>

}
},
"virtual_interface": {

"id": <integer>,
"name": <string>,
"vrf": {

"id": <integer>,
"internal_name": <string>,
"vrf": <string>

}
}

}
]

}
]

}

Using fields and kind together

If fields is being used together kind, only the required fields will be retrieved instead of default.

Example with details kind and id field:

kind=details&fields=id

Default behavior without kind and fields

If neither kind nor fields are used in request, the response body will look like this:

Response body:

{
"ips":[

{

216 Chapter 8. Using GloboNetworkAPI V4

src Documentation, Release 3.4.2

"id": <integer>,
"oct4": <integer>,
"oct3": <integer>,
"oct2": <integer>,
"oct1": <integer>,
"networkipv4": <integer>,
"description": <string>

}
]

}

POST

Creating list of IPv4 objects

URL:

/api/v4/ipv4/

Request body:

{
"ips": [{

"oct1": <integer>,
"oct2": <integer>,
"oct3": <integer>,
"oct4": <integer>,
"networkipv4": <integer>,
"description": <string>,
"equipments": [

{
"equipment": {

"id": <integer>
},
"virtual_interface": {

"id": <integer>
}

}, ...
]

},..]
}

Request Example with only required fields:

{
"ips": [{

"networkipv4": 10
}]

}

Request Example with some more fields:

{
"ips": [{

"oct1": 10,
"oct2": 10,
"oct3": 0,

8.3. IPv4 module 217

src Documentation, Release 3.4.2

"oct4": 20,
"networkipv4": 2,
"equipments": [

{
"equipment": {

"id": 1
},
"virtual_interface": {

"id": 1
}

},
{

"equipment": {
"id": 2

}
}

]
}]

}

Through IPv4 POST route you can create one or more IPv4 objects. Only “networkipv4” field are required. You can
specify other fields such as:

• oct1, oct2, oct3, oct4 - Are the octets of IPv4. Given a network, API can provide to you an IPv4 Address
automatically, but you can assign a IPv4 Address in a manually way. If you specify some octet, you need to
specify all the others.

• description - Description of new IPv4.

• networkipv4 - This parameter is mandatory. It is the network to which new IP address will belong.

• equipments - You can associate new IPv4 address to one or more equipments and with Virtual Interfaces to-
gether. In the association to Equipment it’s not mandatory to specify Virtual Interface.

At the end of POST request, it will be returned the identifiers of new IPv4 objects created.

Response Body:

[
{

"id": <integer>
},...

]

Response Example for two IPv4 objects created:

[
{

"id": 10
},
{

"id": 11
}

]

URL Example:

/api/v4/ipv4/

218 Chapter 8. Using GloboNetworkAPI V4

src Documentation, Release 3.4.2

PUT

Updating list of IPv4 objects in database

URL:

/api/v4/ipv4/[ipv4_ids]/

where ipv4_ids are the identifiers of IPv4 objects. It can use multiple ids separated by semicolons.

Example with Parameter IDs:

One ID:

/api/v4/ipv4/1/

Many IDs:

/api/v4/ipv4/1;3;8/

Request body:

{
"ips": [{

"id": <integer>,
"description": <string>,
"equipments": [

{
"equipment": {

"id": <integer>
},
"virtual_interface": {

"id": <integer>
}

}, ...
]

},..]
}

Request Example:

{
"ips": [{

"id": 1,
"description": "New description",
"equipments": [

{
"equipment": {

"id": 1
},
"virtual_interface": {

"id": 1
}

},
{

"equipment": {
"id": 2

}
}

]

8.3. IPv4 module 219

src Documentation, Release 3.4.2

}]
}

In IPv4 PUT request, you can only change description and associations with equipments.

• id - Identifier of IPv4 that will be changed. It’s mandatory.

• description - Description of new IPv4.

• equipments - You can create new associations with equipments and Virtual Interfaces when updating IPv4.
Old associations will be deleted even you don’t specify new associations to other equipments if all of them
not contains a Virtual Interface. If some Virtual Interface appears at least one relationship between IPv4 and
Equipment, it can’t be deleted and the IPv4 will not be updated.

URL Example:

/api/v4/ipv4/1/

DELETE

Deleting a list of IPv4 objects in database

Deleting list of IPv4 objects and associated Vip Requests and relationships with Equipments URL:

/api/v4/ipv4/[ipv4_ids]/

where ipv4_ids are the identifiers of ipv4s desired to delete. It can use multiple id’s separated by semicolons. Doing
this, all Vip Request associated with IPv4 desired to be deleted will be deleted too. All associations made to equipments
will also be deleted. If Virtual Interface is present in some association of IPv4 desired to be deleted to some equipment,
the association will not be deleted and therefore the IPv4 will also not be deleted.

Example with Parameter IDs:

One ID:

/api/v4/ipv4/1/

Many IDs:

/api/v4/ipv4/1;3;8/

/api/v3/ipv4/async/

POST

Creating list of IPv4 asynchronously

URL:

/api/v4/ipv4/async/

You can also create IPv4 objects asynchronously. It is only necessary to provide the same as in the respective syn-
chronous request (For more information about request body please check Synchronous IPv4 Creating). In this case,
when you make request NetworkAPI will create a task to fullfil it. You will not receive the identifier of each IPv4
desired to be created in response, but for each IPv4 you will receive an identifier for the created task. Since this is an
asynchronous request, it may be that IPv4 objects have been created after you receive the response. It is your task,
therefore, to consult the API through the available means to verify that your request have been met.

220 Chapter 8. Using GloboNetworkAPI V4

src Documentation, Release 3.4.2

URL Example:

/api/v4/ipv4/async/

Response body:

[
{

"task_id": [string with 36 characters]
},...

]

Response Example for update of two IPv4 objects:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"
}

]

PUT

Updating list of IPv4 asynchronously

URL:

/api/v4/ipv4/async/

You can also update IPv4 objects asynchronously. It is only necessary to provide the same as in the respective syn-
chronous request (For more information about request body please check Synchronous IPv4 Updating). In this case,
when you make request NetworkAPI will create a task to fullfil it. You will not receive the identifier of each IPv4
desired to be updated in response, but for each IPv4 you will receive an identifier for the created task. Since this is an
asynchronous request, it may be that IPv4 objects have been updated after you receive the response. It is your task,
therefore, to consult the API through the available means to verify that your request have been met.

URL Example:

/api/v4/ipv4/async/

Response body:

[
{

"task_id": [string with 36 characters]
},...

]

Response Example for update of two IPv4 objects:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"

8.3. IPv4 module 221

src Documentation, Release 3.4.2

}
]

DELETE

Deleting list of IPv4 asynchronously

URL:

/api/v4/ipv4/async/

You can also delete IPv4 objects asynchronously. It is only necessary to provide the same as in the respective syn-
chronous request (For more information please check Synchronous IPv4 Deleting). In this case, when you make
request NetworkAPI will create a task to fullfil it. You will not receive an empty dict in response as occurs in the
synchronous request, but for each IPv4 you will receive an identifier for the created task. Since this is an asynchronous
request, it may be that IPv4 objects have been updated after you receive the response. It is your task, therefore, to
consult the API through the available means to verify that your request have been met.

URL Example:

/api/v4/ipv4/async/

Response body:

[
{

"task_id": [string with 36 characters]
}, ...

]

Response Example for update of two IPv4 objects:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"
}

]

IPv6 module

/api/v4/ipv6/

GET

Obtaining list of IPv6 objects

It is possible to specify in several ways fields desired to be retrieved in IPv6 module through the use of some GET
parameters. You are not required to use these parameters, but depending on your needs it can make your requests
faster if you are dealing with many objects and you need few fields. The following fields are available for IPv6 module
(hyperlinked or bold marked fields acts as foreign keys and can be expanded using __basic or __details when using

222 Chapter 8. Using GloboNetworkAPI V4

src Documentation, Release 3.4.2

fields, include or exclude GET Parameters. Hyperlinked fields points to its documentation. Some expandable fields
that do not have documentation have its childs described here too because some of these childs are also expandable.):

• id

• ip_formated

• block1

• block2

• block3

• block4

• block5

• block6

• block7

• block8

• networkipv6

• description

• equipments

– equipment

– virtual-interface

• vips

• server_pool_members

– id

– server_pool

– identifier

– ip

– ipv6

– priority

– weight

– limit

– port_real

– member_status

– last_status_update

– last_status_update_formated

– equipments

– equipment

8.4. IPv6 module 223

src Documentation, Release 3.4.2

Obtaining list of IPv6 objects through id’s URL:

/api/v4/ipv6/[ipv6_ids]/

where ipv6_ids are the identifiers of IPv6 objects desired to be retrieved. It can use multiple id’s separated by semi-
colons.

Example with Parameter IDs:

One ID:

/api/v4/ipv6/1/

Many IDs:

/api/v4/ipv6/1;3;8/

Obtaining list of IPv6 objects through extended search More information about Django QuerySet API, please
see:

:ref:‘Django QuerySet API reference <https://docs.djangoproject.com/el/1.10/ref/models/querysets/>‘_

URL:

/api/v4/ipv6/

GET Parameter:

search=[encoded dict]

Example:

/api/v4/ipv6/?search=[encoded dict]

Request body example:

{
"extends_search": [

{
"block1": "fefe",

},
{

"block1": "fdfd",
}

],
"start_record": 0,
"custom_search": "",
"end_record": 25,
"asorting_cols": [],
"searchable_columns": []

}

• When “search” is used, “total” property is also retrieved.

Using fields GET parameter

Through fields, you can specify desired fields.

Example with field id:

224 Chapter 8. Using GloboNetworkAPI V4

src Documentation, Release 3.4.2

fields=id

Example with fields id, ip_formated and networkipv6:

fields=id,ip_formated,networkipv6

Using kind GET parameter

The IPv6 module also accepts the kind GET parameter. Only two values are accepted by kind: basic or details. For
each value it has a set of default fields. The difference between them is that in general details contains more fields than
basic, and the common fields between them are more detailed for details.

Example with basic option:

kind=basic

Response body with basic kind:

{
"ips": [

{
"id": <integer>,
"ip_formated": <string>,
"networkipv6": {

"id": <integer>,
"networkv6": <string>,
"mask_formated": <string>,
"vlan": {

"id": <integer>,
"name": <string>,
"num_vlan": <integer>

},
"network_type": <integer>,
"environmentvip": <integer>

},
"description": <string>

}
]

}

Example with details option:

kind=details

Response body with details kind:

{
"ips": [

{
"id": <integer>,
"ip_formated": <string>,
"block1": <string>,
"block2": <string>,
"block3": <string>,
"block4": <string>,
"block5": <string>,
"block6": <string>,
"block7": <string>,
"block8": <string>,

8.4. IPv6 module 225

src Documentation, Release 3.4.2

"networkipv6": {
"id": <integer>,
"block1": <string>,
"block2": <string>,
"block3": <string>,
"block4": <string>,
"block5": <string>,
"block6": <string>,
"block7": <string>,
"block8": <string>,
"prefix": <integer>,
"networkv6": <string>,
"mask1": <string>,
"mask2": <string>,
"mask3": <string>,
"mask4": <string>,
"mask5": <string>,
"mask6": <string>,
"mask7": <string>,
"mask8": <string>,
"mask_formated": <string>,
"vlan": {

"id": <integer>,
"name": <string>,
"num_vlan": <integer>,
"environment": <integer>,
"description": <string>,
"acl_file_name": <string>,
"acl_valida": <boolean>,
"acl_file_name_v6": <string>,
"acl_valida_v6": <boolean>,
"active": <boolean>,
"vrf": <string>,
"acl_draft": <string>,
"acl_draft_v6": <string>

},
"network_type": {

"id": <integer>,
"tipo_rede": <string>

},
"environmentvip": {

"id": <integer>,
"finalidade_txt": <string>,
"cliente_txt": <string>,
"ambiente_p44_txt": <string>,
"description": <string>

},
"active": <boolean>,
"dhcprelay": [

<string>,...
],
"cluster_unit": <string>

},
"description": <string>,
"equipments": [

{
"equipment": {

"id": <integer>,

226 Chapter 8. Using GloboNetworkAPI V4

src Documentation, Release 3.4.2

"name": <string>,
"maintenance": <boolean>,
"equipment_type": {

"id": <integer>,
"equipment_type": <string>

},
"model": {

"id": <integer>,
"name": <string>

},
"environments": [

{
"is_router": <boolean>,
"is_controller": <boolean>,
"environment": {

"id": <integer>,
"name": <string>,
"grupo_l3": <integer>,
"ambiente_logico": <integer>,
"divisao_dc": <integer>,
"filter": <integer>,
"acl_path": <string>,
"ipv4_template": <string>,
"ipv6_template": <string>,
"link": <string>,
"min_num_vlan_1": <integer>,
"max_num_vlan_1": <integer>,
"min_num_vlan_2": <integer>,
"max_num_vlan_2": <integer>,
"default_vrf": <integer>,
"father_environment": <recurrence-to:environment>,
"sdn_controllers": null

}
}

],
"groups": [

{
"id": <integer>,
"name": <string>

}
],
"id_as": {

"id": <integer>,
"name": <string>,
"description": <string>

}
},
"virtual_interface": {

"id": <integer>,
"name": <string>,
"vrf": {

"id": <integer>,
"internal_name": <string>,
"vrf": <string>

}
}

}
]

8.4. IPv6 module 227

src Documentation, Release 3.4.2

}
]

}

Using fields and kind together

If fields is being used together kind, only the required fields will be retrieved instead of default.

Example with details kind and id field:

kind=details&fields=id

Default behavior without kind and fields

If neither kind nor fields are used in request, the response body will look like this:

Response body:

{
"ips":[

{
"id": <integer>,
"block1": <string>,
"block2": <string>,
"block3": <string>,
"block4": <string>,
"block5": <string>,
"block6": <string>,
"block7": <string>,
"block8": <string>,
"networkipv6": <integer>,
"description": <string>

}
]

}

POST

Creating list of IPv6 objects

URL:

/api/v4/ipv6/

Request body:

{
"ips": [{

"block1": <string>,
"block2": <string>,
"block3": <string>,
"block4": <string>,
"block5": <string>,
"block6": <string>,
"block7": <string>,

228 Chapter 8. Using GloboNetworkAPI V4

src Documentation, Release 3.4.2

"block8": <string>,
"networkipv6": <integer>,
"description": <string>,
"equipments": [

{
"equipment": {

"id": <integer>
},
"virtual_interface": {

"id": <integer>
}

}, ...
]

},..]
}

Request Example with only required fields:

{
"ips": [{

"networkipv6": 10
}]

}

Request Example with some more fields:

{
"ips": [{

"block1": "fdbe",
"block2": "fdbe",
"block3": "0000",
"block4": "0000",
"block5": "0000",
"block6": "0000",
"block7": "0000",
"block8": "0000",
"networkipv6": 2,
"equipments": [

{
"equipment": {

"id": 1
},
"virtual_interface": {

"id": 1
}

},
{

"equipment": {
"id": 2

}
}

]
}]

}

Through IPv6 POST route you can create one or more IPv6 objects. Only “networkipv6” field are required. You can
specify other fields such as:

• block1, block2, block3, block4, block5, block6, block7 and block8 - Are the octets of IPv6. Given a network,

8.4. IPv6 module 229

src Documentation, Release 3.4.2

API can provide to you an IPv6 Address automatically, but you can assign a IPv6 Address in a manually way.
If you specify some octet, you need to specify all the others.

• networkipv6 - This parameter is mandatory. It is the network to which new IP address will belong.

• description - Description of new IPv6.

• equipments - You can associate new IPv6 address to one or more equipments and with Virtual Interfaces to-
gether. In the association to Equipment it’s not mandatory to specify Virtual Interface.

At the end of POST request, it will be returned the identifiers of new IPv6 objects created.

Response Body:

[
{

"id": <integer>
},...

]

Response Example for two IPv6 objects created:

[
{

"id": 10
},
{

"id": 11
}

]

URL Example:

/api/v4/ipv6/

PUT

Updating list of IPv6 objects in database

URL:

/api/v4/ipv6/[ipv6_ids]/

where ipv6_ids are the identifiers of IPv6 objects. It can use multiple ids separated by semicolons.

Example with Parameter IDs:

One ID:

/api/v4/ipv6/1/

Many IDs:

/api/v4/ipv6/1;3;8/

Request body:

{
"ips": [{

"id": <integer>,
"description": <string>,

230 Chapter 8. Using GloboNetworkAPI V4

src Documentation, Release 3.4.2

"equipments": [
{

"equipment": {
"id": <integer>

},
"virtual_interface": {

"id": <integer>
}

}, ...
]

},..]
}

Request Example:

{
"ips": [{

"id": 1,
"description": "New description",
"equipments": [

{
"equipment": {

"id": 1
},
"virtual_interface": {

"id": 1
}

},
{

"equipment": {
"id": 2

}
}

]
}]

}

In IPv6 PUT request, you can only change description and associations with equipments.

• id - Identifier of IPv6 that will be changed. It’s mandatory.

• description - Description of new IPv6.

• equipments - You can create new associations with equipments and Virtual Interfaces when updating IPv6.
Old associations will be deleted even you don’t specify new associations to other equipments if all of them
not contains a Virtual Interface. If some Virtual Interface appears at least one relationship between IPv6 and
Equipment, it can’t be deleted and the IPv6 will not be updated.

URL Example:

/api/v4/ipv6/1/

DELETE

Deleting a list of IPv6 objects in database

Deleting list of IPv6 objects and associated Vip Requests and relationships with Equipments and Virtual Inter-
faces URL:

8.4. IPv6 module 231

src Documentation, Release 3.4.2

/api/v4/ipv6/[ipv6_ids]/

where ipv6_ids are the identifiers of ipv6s desired to delete. It can use multiple id’s separated by semicolons. Doing
this, all Vip Request associated with IPv6 desired to be deleted will be deleted too. All associations made to equipments
will also be deleted. If Virtual Interface is present in some association of IPv6 desired to be deleted to some equipment,
the association will not be deleted and therefore the IPv6 will also not be deleted.

Example with Parameter IDs:

One ID:

/api/v4/ipv6/1/

Many IDs:

/api/v4/ipv6/1;3;8/

/api/v4/ipv6/async/

POST

Creating list of IPv6 asynchronously

URL:

/api/v4/ipv6/async/

You can also create IPv6 objects asynchronously. It is only necessary to provide the same as in the respective syn-
chronous request (For more information about request body please check Synchronous IPv6 Creating). In this case,
when you make request NetworkAPI will create a task to fullfil it. You will not receive the identifier of each IPv6
desired to be created in response, but for each IPv6 you will receive an identifier for the created task. Since this is an
asynchronous request, it may be that IPv6 objects have been created after you receive the response. It is your task,
therefore, to consult the API through the available means to verify that your request have been met.

URL Example:

/api/v4/ipv6/async/

Response body:

[
{

"task_id": [string with 36 characters]
},...

]

Response Example for update of two IPv6 objects:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"
}

]

232 Chapter 8. Using GloboNetworkAPI V4

src Documentation, Release 3.4.2

PUT

Updating list of IPv6 asynchronously

URL:

/api/v4/ipv6/async/

You can also update IPv6 objects asynchronously. It is only necessary to provide the same as in the respective syn-
chronous request (For more information about request body please check Synchronous IPv6 Updating). In this case,
when you make request NetworkAPI will create a task to fullfil it. You will not receive the identifier of each IPv6
desired to be updated in response, but for each IPv6 you will receive an identifier for the created task. Since this is an
asynchronous request, it may be that IPv6 objects have been updated after you receive the response. It is your task,
therefore, to consult the API through the available means to verify that your request have been met.

URL Example:

/api/v4/ipv6/async/

Response body:

[
{

"task_id": [string with 36 characters]
},...

]

Response Example for update of two IPv6 objects:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"
}

]

DELETE

Deleting list of IPv6 asynchronously

URL:

/api/v4/ipv6/async/

You can also delete IPv6 objects asynchronously. It is only necessary to provide the same as in the respective syn-
chronous request (For more information please check Synchronous IPv6 Deleting). In this case, when you make
request NetworkAPI will create a task to fullfil it. You will not receive an empty dict in response as occurs in the
synchronous request, but for each IPv6 you will receive an identifier for the created task. Since this is an asynchronous
request, it may be that IPv6 objects have been updated after you receive the response. It is your task, therefore, to
consult the API through the available means to verify that your request have been met.

URL Example:

/api/v4/ipv6/async/

8.4. IPv6 module 233

src Documentation, Release 3.4.2

Response body:

[
{

"task_id": [string with 36 characters]
},...

]

Response Example for update of two IPv6 objects:

[
{

"task_id": "36dc887e-48bf-4c83-b6f5-281b70976a8f"
},
{

"task_id": "17ebd466-0231-4bd0-8f78-54ed20238fa3"
}

]

Neighbor module

/api/v4/neighbor/

GET

Obtaining list of Neighbors

It is possible to specify in several ways fields desired to be retrieved in Neighbor module through the use of some GET
parameters. You are not required to use these parameters, but depending on your needs it can make your requests faster
if you are dealing with many objects and you need few fields. The following fields are available for Neighbor module
(hyperlinked or bold marked fields acts as foreign keys and can be expanded using __basic or __details when using
fields, include or exclude GET Parameters. Hyperlinked fields points to its documentation. Some expandable fields
that do not have documentation have its childs described here too because some of these childs are also expandable.):

• id

• remote_as

• remote_ip

• password

• maximum_hops

• timer_keepalive

• timer_timeout

• description

• soft_reconfiguration

• community

• remove_private_as

• next_hop_self

• kind

234 Chapter 8. Using GloboNetworkAPI V4

src Documentation, Release 3.4.2

• created

• virtual-interface

Obtaining list of Equipments through extended search More information about Django QuerySet API, please
see:

:ref:‘Django QuerySet API reference <https://docs.djangoproject.com/el/1.10/ref/models/querysets/>‘_

URL:

/api/v4/neighbor/

GET Parameter:

search=[encoded dict]

Example:

/api/v4/neighbor/?search=[encoded dict]

Request body example:

{
"extends_search": [{

"community": false,
}],
"start_record": 0,
"custom_search": "",
"end_record": 25,
"asorting_cols": [],
"searchable_columns": []

}

• When “search” is used, “total” property is also retrieved.

Using fields GET parameter

Through fields, you can specify desired fields.

Example with field id:

fields=id

Example with fields id, password and community:

fields=id,password,community

Using kind GET parameter

The Neighbor module also accepts the kind GET parameter. Only two values are accepted by kind: basic or details.
For each value it has a set of default fields. The difference between them is that in general details contains more fields
than basic, and the common fields between them are more detailed for details. For example, the field virtual_interface
for basic will contain only the identifier and for details will contain a bunch of information.

Example with basic option:

8.5. Neighbor module 235

src Documentation, Release 3.4.2

kind=basic

Response body with basic kind:

{
"neighbors": [{

"id": <integer>,
"remote_as": <string>,
"remote_ip": <string>,
"password": <string>,
"maximum_hops": <string>,
"timer_keepalive": <string>,
"timer_timeout": <string>,
"description": <string>,
"soft_reconfiguration": <boolean>,
"community": <boolean>,
"remove_private_as": <boolean>,
"next_hop_self": <boolean>,
"kind": <string>,
"created": <boolean>,
"virtual_interface": {

"id": <integer>,
"name": <string>,
"vrf": <integer>

}
}]

}

Example with details option:

kind=details

Response body with details kind:

{
"neighbors": [

{
"id": <integer>,
"remote_as": <string>,
"remote_ip": <string>,
"password": <string>,
"maximum_hops": <string>,
"timer_keepalive": <string>,
"timer_timeout": <string>,
"description": <string>,
"soft_reconfiguration": <boolean>,
"community": <boolean>,
"remove_private_as": <boolean>,
"next_hop_self": <boolean>,
"kind": <string>,
"created": <boolean>,
"virtual_interface": {

"id": <integer>,
"name": <string>,
"vrf": {

"id": <integer>,
"internal_name": <string>,
"vrf": <string>

},

236 Chapter 8. Using GloboNetworkAPI V4

src Documentation, Release 3.4.2

"ipv4_equipment": [
{

"ip": {
"id": <integer>,
"oct4": <integer>,
"oct3": <integer>,
"oct2": <integer>,
"oct1": <integer>,
"networkipv4": <integer>,
"description": <string>

},
"equipment": {

"id": <integer>,
"name": <string>,
"maintenance": <boolean>,
"equipment_type": {

"id": <integer>,
"equipment_type": <string>

},
"model": {

"id": <integer>,
"name": <string>

},
"environments": [

{
"is_router": <boolean>,
"is_controller": <boolean>,
"environment": {

"id": <integer>,
"name": <string>,
"grupo_l3": <integer>,
"ambiente_logico": <integer>,
"divisao_dc": <integer>,
"filter": <integer>,
"acl_path": <string>,
"ipv4_template": <string>,
"ipv6_template": <string>,
"link": <string>,
"min_num_vlan_1": <integer>,
"max_num_vlan_1": <integer>,
"min_num_vlan_2": <integer>,
"max_num_vlan_2": <integer>,
"default_vrf": <integer>,
"father_environment": <recursion-to:environment>,
"sdn_controllers": null

}
}, ...

],
"groups": [

{
"id": <integer>,
"name": <string>

}, ...
],
"id_as": {

"id": <integer>,
"name": <string>,
"description": <string>

8.5. Neighbor module 237

src Documentation, Release 3.4.2

}
}

}, ...
],
"ipv6_equipment": [

{
"ip": {

"id": <integer>,
"block1": <string>,
"block2": <string>,
"block3": <string>,
"block4": <string>,
"block5": <string>,
"block6": <string>,
"block7": <string>,
"block8": <string>,
"networkipv6": <integer>,
"description": <string>

},
"equipment": {

"id": <integer>,
"name": <string>,
"maintenance": <boolean>,
"equipment_type": {

"id": <integer>,
"equipment_type": <string>

},
"model": {

"id": <integer>,
"name": <string>

},
"environments": [

{
"is_router": <boolean>,
"is_controller": <boolean>,
"environment": {

"id": <integer>,
"name": <string>,
"grupo_l3": <integer>,
"ambiente_logico": <integer>,
"divisao_dc": <integer>,
"filter": <integer>,
"acl_path": <string>,
"ipv4_template": <string>,
"ipv6_template": <string>,
"link": <string>,
"min_num_vlan_1": <integer>,
"max_num_vlan_1": <integer>,
"min_num_vlan_2": <integer>,
"max_num_vlan_2": <integer>,
"default_vrf": <integer>,
"father_environment": <recursion-to:environment>,
"sdn_controllers": null

}
}, ...

],
"groups": [

{

238 Chapter 8. Using GloboNetworkAPI V4

src Documentation, Release 3.4.2

"id": <integer>,
"name": <string>

}, ...
],
"id_as": {

"id": <integer>,
"name": <string>,
"description": <string>

}
}

}, ...
]

}
}, ...

]
}

Using fields and kind together

If fields is being used together kind, only the required fields will be retrieved instead of default.

Example with details kind and id field:

kind=details&fields=id

Default behavior without kind and fields

If neither kind nor fields are used in request, the response body will look like this:

Response body:

{
"neighbors": [{

"id": 1,
"remote_as": <string>,
"remote_ip": <string>,
"password": <string>,
"maximum_hops": <string>,
"timer_keepalive": <string>,
"timer_timeout": <string>,
"description": <string>,
"soft_reconfiguration": <boolean>,
"community": <boolean>,
"remove_private_as": <boolean>,
"next_hop_self": <boolean>,
"kind": <string>,
"created": <boolean>,
"virtual_interface": 1

}, ...]
}

POST

8.5. Neighbor module 239

src Documentation, Release 3.4.2

Creating list of Neighbors

URL:

/api/v4/neighbor/

Request body:

{
"neighbors": [

{
"id": <integer>,
"remote_as": <string>,
"remote_ip": <string>,
"password": <string>,
"maximum_hops": <string>,
"timer_keepalive": <string>,
"timer_timeout": <string>,
"description": <string>,
"soft_reconfiguration": <boolean>,
"community": <boolean>,
"remove_private_as": <boolean>,
"next_hop_self": <boolean>,
"kind": <string>,
"virtual_interface": <integer:virtual_interface_fk>

}, ...
]

}

• virtual_interface - You can associate a virtual interface to new Neighbor passing its identifier in this field.

URL Example:

/api/v4/neighbor/

PUT

Updating list of neighbors in database

URL:

/api/v4/neighbor/[neighbor_ids]/

where neighbor_ids are the identifiers of neighbors. It can use multiple ids separated by semicolons.

Example with Parameter IDs:

One ID:

/api/v4/neighbor/1/

Many IDs:

/api/v4/neighbor/1;3;8/

Request body:

240 Chapter 8. Using GloboNetworkAPI V4

src Documentation, Release 3.4.2

{
"neighbors": [

{
"id": <integer>,
"remote_as": <string>,
"remote_ip": <string>,
"password": <string>,
"maximum_hops": <string>,
"timer_keepalive": <string>,
"timer_timeout": <string>,
"description": <string>,
"soft_reconfiguration": <boolean>,
"community": <boolean>,
"remove_private_as": <boolean>,
"next_hop_self": <boolean>,
"kind": <string>,
"virtual_interface": <integer:virtual_interface_fk>

}, ...
]

}

• virtual_interface - You can associate a virtual interface to new Neighbor passing its identifier in this field.

Remember that if you don’t provide the not mandatory fields, actual information (e.g. association to Virtual Interface)
will be deleted. The effect of PUT Request is always to replace actual data by what you provide into fields in this type
of request.

URL Example:

/api/v4/neighbor/1/

DELETE

Deleting a list of neighbors in database

Deleting list of neighbors URL:

/api/v4/neighbor/[neighbor_ids]/

where neighbor_ids are the identifiers of neighbors desired to delete. It can use multiple id’s separated by semicolons.

Example with Parameter IDs:

One ID:

/api/v4/neighbor/1/

Many IDs:

/api/v4/neighbor/1;3;8/

Virtual Interface module

/api/v4/virtual-interface/

8.6. Virtual Interface module 241

src Documentation, Release 3.4.2

GET

Obtaining list of Virtual Interfaces

It is possible to specify in several ways fields desired to be retrieved in Virtual Interface module through the use of
some GET parameters. You are not required to use these parameters, but depending on your needs it can make your
requests faster if you are dealing with many objects and you need few fields. The following fields are available for
Virtual Interface module (hyperlinked or bold marked fields acts as foreign keys and can be expanded using __basic
or __details when using fields, include or exclude GET Parameters. Hyperlinked fields points to its documentation.
Some expandable fields that do not have documentation have its childs described here too because some of these childs
are also expandable.):

• id

• name

• vrf

Obtaining list of Virtual Interfaces through id’s URL:

/api/v4/virtual-interface/[equipment_ids]/

where equipment_ids are the identifiers of Virtual Interfaces desired to be retrieved. It can use multiple id’s separated
by semicolons.

Example with Parameter IDs:

One ID:

/api/v4/virtual-interface/1/

Many IDs:

/api/v4/virtual-interface/1;3;8/

Obtaining list of Virtual Interfaces through extended search More information about Django QuerySet API,
please see:

:ref:‘Django QuerySet API reference <https://docs.djangoproject.com/el/1.10/ref/models/querysets/>‘_

URL:

/api/v4/virtual-interface/

GET Parameter:

search=[encoded dict]

Example:

/api/v4/virtual-interface/?search=[encoded dict]

Request body example:

{
"extends_search": [{

"vrf__id": 1,
"name__contains": "abc"

}],

242 Chapter 8. Using GloboNetworkAPI V4

src Documentation, Release 3.4.2

"start_record": 0,
"custom_search": "",
"end_record": 25,
"asorting_cols": [],
"searchable_columns": []

}

• When “search” is used, “total” property is also retrieved.

Using fields GET parameter

Through fields, you can specify desired fields.

Example with field id:

fields=id

Example with fields id and vrf:

fields=id,vrf

Using kind GET parameter

The Virtual Interface module also accepts the kind GET parameter. Only two values are accepted by kind: basic or
details. For each value it has a set of default fields. The difference between them is that in general details contains
more fields than basic, and the common fields between them are more detailed for details. For example, the field
equipment_type for basic will contain only the identifier and for details will contain also the description.

Example with basic option:

kind=basic

Response body with basic kind:

{
"virtual_interfaces": [

{
"id": <integer>,
"name": <string>,
"vrf": {

"id": <integer>,
"internal_name": <string>,
"vrf": <string>

}
}, ...

]
}

Example with details option:

kind=details

Response body with details kind:

{
"virtual_interfaces": [

{
"id": <integer>,

8.6. Virtual Interface module 243

src Documentation, Release 3.4.2

"name": <string>,
"vrf": {

"id": <integer>,
"internal_name": <string>,
"vrf": <string>

},
"ipv4_equipment": [

{
"ip": {

"id": <integer>,
"oct4": <integer>,
"oct3": <integer>,
"oct2": <integer>,
"oct1": <integer>,
"networkipv4": {

"id": <integer>,
"oct1": <integer>,
"oct2": <integer>,
"oct3": <integer>,
"oct4": <integer>,
"prefix": <integer>,
"networkv4": <string>,
"mask_oct1": <integer>,
"mask_oct2": <integer>,
"mask_oct3": <integer>,
"mask_oct4": <integer>,
"mask_formated": <string>,
"broadcast": <string>,
"vlan": {

"id": <integer>,
"name": <string>,
"num_vlan": <integer>,
"environment": <integer>,
"description": <string>,
"acl_file_name": <string>,
"acl_valida": <boolean>,
"acl_file_name_v6": <string>,
"acl_valida_v6": <boolean>,
"active": <boolean>,
"vrf": <string>,
"acl_draft": <string>,
"acl_draft_v6": <string>

},
"network_type": {

"id": <integer>,
"tipo_rede": <string>

},
"environmentvip": {

"id": <integer>,
"finalidade_txt": <string>,
"cliente_txt": <string>,
"ambiente_p44_txt": <string>,
"description": <string>

},
"active": <boolean>,
"dhcprelay": [

<string>, ...
],

244 Chapter 8. Using GloboNetworkAPI V4

src Documentation, Release 3.4.2

"cluster_unit": <string>
},
"description": <string>

},
"equipment": {

"id": <integer>,
"name": <string>,
"maintenance": <boolean>,
"equipment_type": {

"id": <integer>,
"equipment_type": <string>

},
"model": {

"id": <integer>,
"name": <string>

},
"environments": [

{
"is_router": <boolean>,
"is_controller": <boolean>,
"environment": {

"id": <integer>,
"name": <string>,
"grupo_l3": <integer>,
"ambiente_logico": <integer>,
"divisao_dc": <integer>,
"filter": <integer>,
"acl_path": <string>,
"ipv4_template": <string>,
"ipv6_template": <string>,
"link": <string>,
"min_num_vlan_1": <integer>,
"max_num_vlan_1": <integer>,
"min_num_vlan_2": <integer>,
"max_num_vlan_2": <integer>,
"default_vrf": <integer>,
"father_environment": <recurrence-to:environment>,
"sdn_controllers": null

}
}, ...

],
"groups": [

{
"id": <integer>,
"name": <string>

}, ...
],
"id_as": {

"id": <integer>,
"name": <string>,
"description": <string>

}
}

}, ...
],
"ipv6_equipment": [

{
"ip": {

8.6. Virtual Interface module 245

src Documentation, Release 3.4.2

"id": <integer>,
"block1": <string>,
"block2": <string>,
"block3": <string>,
"block4": <string>,
"block5": <string>,
"block6": <string>,
"block7": <string>,
"block8": <string>,
"networkipv6": {

"id": <integer>,
"block1": <string>,
"block2": <string>,
"block3": <string>,
"block4": <string>,
"block5": <string>,
"block6": <string>,
"block7": <string>,
"block8": <string>,
"prefix": <integer>,
"networkv6": <string>,
"mask1": <string>,
"mask2": <string>,
"mask3": <string>,
"mask4": <string>,
"mask5": <string>,
"mask6": <string>,
"mask7": <string>,
"mask8": <string>,
"mask_formated": <string>,
"vlan": {

"id": <integer>,
"name": <string>,
"num_vlan": <integer>,
"environment": <integer>,
"description": <string>,
"acl_file_name": <string>,
"acl_valida": <boolean>,
"acl_file_name_v6": <string>,
"acl_valida_v6": <boolean>,
"active": <boolean>,
"vrf": <string>,
"acl_draft": <string>,
"acl_draft_v6": <string>

},
"network_type": {

"id": <integer>,
"tipo_rede": <string>

},
"environmentvip": {

"id": <integer>,
"finalidade_txt": <string>,
"cliente_txt": <string>,
"ambiente_p44_txt": <string>,
"description": <string>

},
"active": <boolean>,
"dhcprelay": [

246 Chapter 8. Using GloboNetworkAPI V4

src Documentation, Release 3.4.2

<string>, ...
],
"cluster_unit": <string>

},
"description": <string>

},
"equipment": {

"id": <integer>,
"name": <string>,
"maintenance": <boolean>,
"equipment_type": {

"id": <integer>,
"equipment_type": <string>

},
"model": {

"id": <integer>,
"name": <string>

},
"environments": [

{
"is_router": <boolean>,
"is_controller": <boolean>,
"environment": {

"id": <integer>,
"name": <string>,
"grupo_l3": <integer>,
"ambiente_logico": <integer>,
"divisao_dc": <integer>,
"filter": <integer>,
"acl_path": <string>,
"ipv4_template": <string>,
"ipv6_template": <string>,
"link": <string>,
"min_num_vlan_1": <integer>,
"max_num_vlan_1": <integer>,
"min_num_vlan_2": <integer>,
"max_num_vlan_2": <integer>,
"default_vrf": <integer>,
"father_environment": <recurrence-to:environment>,
"sdn_controllers": null

}
}, ...

],
"groups": [

{
"id": <integer>,
"name": <string>

}, ...
],
"id_as": {

"id": <integer>,
"name": <string>,
"description": <string>

}
}

}, ...
]

}, ...

8.6. Virtual Interface module 247

src Documentation, Release 3.4.2

]
}

Using fields and kind together

If fields is being used together kind, only the required fields will be retrieved instead of default.

Example with details kind and id field:

kind=details&fields=id

Default behavior without kind and fields

If neither kind nor fields are used in request, the response body will look like this:

Response body:

{
"virtual_interfaces": [

{
"id": <integer>,
"name": <string>,
"vrf": <integer>

}, ...
]

}

POST

Creating list of Virtual Interfaces

URL:

/api/v4/virtual-interface/

Request body:

{
"virtual_interfaces": [

{
"vrf": <integer>,
"name": <string>

}, ...
]

}

• vrf - You must associate one Vrf to each new Virtual Interface.

• name - You must assign a name to the new Virtual Interface.

URL Example:

/api/v4/virtual-interface/

248 Chapter 8. Using GloboNetworkAPI V4

src Documentation, Release 3.4.2

PUT

Updating list of Virtual Interfaces in database

URL:

/api/v4/virtual-interface/[virtual_interface_ids]/

where virtual_interface_ids are the identifiers of Virtual Interfaces. It can use multiple ids separated by semicolons.

Example with Parameter IDs:

One ID:

/api/v4/virtual-interface/1/

Many IDs:

/api/v4/virtual-interface/1;3;8/

Request body:

{
"virtual_interfaces": [

{
"id": <integer>,
"vrf": <integer>,
"name": <string>

}, ...
]

}

• id - It’s the identifier of Virtual Interface you want to edit.

• vrf - You must set the Vrf field maintaining actual relationship or setting another Vrf.

• name - You must give new name (or the same) to existing Virtual Interface.

Remember that if you don’t provide the not mandatory fields, actual information (e.g. association between Virtual
Interface and Vrf) will be deleted. The effect of PUT Request is always to replace actual data by what you provide
into fields in this type of request.

URL Example:

/api/v4/virtual-interface/1/

DELETE

Deleting a list of Virtual Interfaces in database

Deleting list of Virtual Interfaces and all relationships URL:

/api/v4/equipment/[virtual_interface_ids]/

where virtual_interface_ids are the identifiers of Virtual Interfaces desired to delete. It can use multiple id’s separated
by semicolons. Doing this, all Neighbors that are related to this particular Virtual Interface will be deleted as well as
the relationships between Equipments and IPv4’s or relationships between Equipments and IPv6’s containing this
particular Virtual Interface.

Example with Parameter IDs:

8.6. Virtual Interface module 249

src Documentation, Release 3.4.2

One ID:

/api/v4/equipment/1/

Many IDs:

/api/v4/equipment/1;3;8/

Software Defined Networks

Contents

• Software Defined Networks
– Architecture

Software Defined Networks is an emerging concept. The OpenFlow protocol did the necessary work to decouple
Control Plane from Data Plane.

Globo Network API takes advantage of these concepts to enable SDN based solutions. The following features are
enabled through SDN:

Access Control Lists (ACLs)

Globo Network API enables deployment of Access Control lists on OpenVSwitch through the OpenFlow controller
OpenDaylight.

To do it, Globo Network API exports HTTP urls to manage flows of ACLs. Using the abstraction of a environment,
we segment the ACLs.

When a controller is inserted as a new equipment in the API we must inform for which Environment that controller
belongs. This way we segment which Environment will use ACLs based on SDN.

If you run a set of OpenVSwitches and control them with the controller you should use the following HTTP Urls to
manage ACLs flows inside the virtual switch:

GET

POST

PUT

DELETE

Architecture

The SDN architecture used by Network API depends on OpenDaylight controller and OpenFlow protocol.

250 Chapter 8. Using GloboNetworkAPI V4

http://openvswitch.org
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opendaylight.org/
https://www.opendaylight.org/
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf

CHAPTER 9

E-mail lists (Forums)

Users e-mail list (soon)

Developers e-mail list (soon)

251

src Documentation, Release 3.4.2

252 Chapter 9. E-mail lists (Forums)

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

253

src Documentation, Release 3.4.2

254 Chapter 10. Indices and tables

Python Module Index

n
networkapi, 56
networkapi.admin_permission, 49
networkapi.ambiente, 25
networkapi.ambiente.resource, 25
networkapi.ambiente.response, 25
networkapi.ambiente.test, 25
networkapi.blockrules, 26
networkapi.blockrules.resource, 26
networkapi.blockrules.test, 26
networkapi.check, 26
networkapi.check.CheckAction, 26
networkapi.config, 26
networkapi.cvs, 51
networkapi.equipamento, 29
networkapi.equipamento.resource, 28
networkapi.equipamento.response, 28
networkapi.error_message_utils, 52
networkapi.eventlog, 29
networkapi.eventlog.resource, 29
networkapi.exception, 52
networkapi.filter, 30
networkapi.filter.resource, 30
networkapi.filter.test, 30
networkapi.filterequiptype, 30
networkapi.grupo, 32
networkapi.grupo.resource, 31
networkapi.grupovirtual, 32
networkapi.grupovirtual.resource, 32
networkapi.healthcheckexpect, 33
networkapi.healthcheckexpect.resource,

32
networkapi.healthcheckexpect.test, 33
networkapi.infrastructure, 37
networkapi.infrastructure.ip_subnet_utils,

33
networkapi.infrastructure.ipaddr, 33
networkapi.infrastructure.script_utils,

36
networkapi.infrastructure.xml_utils, 36

networkapi.interface, 37
networkapi.interface.resource, 37
networkapi.interface.test, 37
networkapi.ip, 42
networkapi.ip.ipcalc, 40
networkapi.ip.resource, 39
networkapi.ip.test, 40
networkapi.log, 54
networkapi.processExceptionMiddleware,

55
networkapi.requisicaovips, 44
networkapi.requisicaovips.resource, 44
networkapi.requisicaovips.test, 44
networkapi.roteiro, 45
networkapi.roteiro.resource, 45
networkapi.roteiro.test, 45
networkapi.semaforo, 45
networkapi.settings, 56
networkapi.sitecustomize, 56
networkapi.tipoacesso, 46
networkapi.tipoacesso.resource, 46
networkapi.tipoacesso.test, 46
networkapi.usuario, 48
networkapi.usuario.resource, 47
networkapi.vlan, 49
networkapi.vlan.resource, 49
networkapi.vlan.test, 49

255

src Documentation, Release 3.4.2

256 Python Module Index

Index

A
ACCESS_TYPE_MANAGEMENT (net-

workapi.admin_permission.AdminPermission
attribute), 49

ACL_APPLY (networkapi.admin_permission.AdminPermission
attribute), 49

ACL_VLAN_VALIDATION (net-
workapi.admin_permission.AdminPermission
attribute), 49

add() (networkapi.cvs.Cvs class method), 51
AddBlockOverrideNotDefined, 52
AddressValueError, 33
AdminPermission (class in net-

workapi.admin_permission), 49
AS_MANAGEMENT (net-

workapi.admin_permission.AdminPermission
attribute), 49

AUDIT_LOG (networkapi.admin_permission.AdminPermission
attribute), 49

AUTHENTICATE (net-
workapi.admin_permission.AdminPermission
attribute), 50

B
bin() (networkapi.ip.ipcalc.IP method), 40
BRAND_MANAGEMENT (net-

workapi.admin_permission.AdminPermission
attribute), 50

broadcast() (networkapi.ip.ipcalc.Network method), 41

C
check() (networkapi.check.CheckAction.CheckAction

method), 26
CheckAction (class in networkapi.check.CheckAction),

26
clone() (networkapi.ip.ipcalc.IP method), 40
collapse_address_list() (in module net-

workapi.infrastructure.ipaddr), 35
CollapseAddrList() (in module net-

workapi.infrastructure.ipaddr), 33

commit() (networkapi.cvs.Cvs class method), 51
CommonAdminEmailHandler (class in networkapi.log),

54
convert_to_utf8() (in module networkapi.log), 55
CustomException, 52
Cvs (class in networkapi.cvs), 51
CVSCommandError, 51
CVSError, 51

D
debug() (networkapi.log.Log method), 55
DEFAULT_MESSAGE (net-

workapi.exception.NetworkActiveError at-
tribute), 53

doRollover() (networkapi.log.MultiprocessTimedRotatingFileHandler
method), 55

dumps() (in module networkapi.infrastructure.xml_utils),
36

dumps_networkapi() (in module net-
workapi.infrastructure.xml_utils), 36

E
emit() (networkapi.log.CommonAdminEmailHandler

method), 54
ENVIRONMENT_MANAGEMENT (net-

workapi.admin_permission.AdminPermission
attribute), 50

ENVIRONMENT_VIP (net-
workapi.admin_permission.AdminPermission
attribute), 50

EnvironmentEnvironmentServerPoolLinked, 52
EnvironmentEnvironmentVipDuplicatedError, 52
EnvironmentEnvironmentVipError, 52
EnvironmentEnvironmentVipNotFoundError, 52
EnvironmentNotFoundError, 53
EnvironmentVipAssociatedToSomeNetworkError, 53
EnvironmentVipError, 53
EnvironmentVipNotFoundError, 53
EQUIP_READ_OPERATION (net-

workapi.admin_permission.AdminPermission
attribute), 50

257

src Documentation, Release 3.4.2

EQUIP_UPDATE_CONFIG_OPERATION (net-
workapi.admin_permission.AdminPermission
attribute), 50

EQUIP_WRITE_OPERATION (net-
workapi.admin_permission.AdminPermission
attribute), 50

EQUIPMENT_GROUP_MANAGEMENT (net-
workapi.admin_permission.AdminPermission
attribute), 50

EQUIPMENT_MANAGEMENT (net-
workapi.admin_permission.AdminPermission
attribute), 50

EquipmentGroupsNotAuthorizedError, 53
error() (networkapi.log.Log method), 55
error_dumps() (in module net-

workapi.error_message_utils), 52
exec_script() (in module net-

workapi.infrastructure.script_utils), 36

F
formatException() (net-

workapi.log.NetworkAPILogFormatter
method), 55

G
get_lock() (in module networkapi.log), 55
get_mixed_type_key() (in module net-

workapi.infrastructure.ipaddr), 35
get_prefix_IPV4() (in module net-

workapi.infrastructure.ip_subnet_utils), 33
get_prefix_IPV6() (in module net-

workapi.infrastructure.ip_subnet_utils), 33

H
has_key() (networkapi.ip.ipcalc.Network method), 41
HEALTH_CHECK_EXPECT (net-

workapi.admin_permission.AdminPermission
attribute), 50

hex() (networkapi.ip.ipcalc.IP method), 40
host_first() (networkapi.ip.ipcalc.Network method), 41
host_last() (networkapi.ip.ipcalc.Network method), 41

I
in_network() (networkapi.ip.ipcalc.Network method), 41
info() (networkapi.ip.ipcalc.IP method), 40
info() (networkapi.log.Log method), 55
init_log() (networkapi.log.Log class method), 55
InvalidNodeNameXMLError, 36
InvalidNodeTypeXMLError, 36
InvalidValueError, 53
IP (class in networkapi.ip.ipcalc), 40
IPAddress() (in module networkapi.infrastructure.ipaddr),

34

IPNetwork() (in module net-
workapi.infrastructure.ipaddr), 34

IPS (networkapi.admin_permission.AdminPermission at-
tribute), 50

IPv4Address (class in networkapi.infrastructure.ipaddr),
34

IPv4Network (class in networkapi.infrastructure.ipaddr),
34

IPv6Address (class in networkapi.infrastructure.ipaddr),
34

IPv6Network (class in networkapi.infrastructure.ipaddr),
35

is_subnetwork() (in module net-
workapi.infrastructure.ip_subnet_utils), 33

is_valid_ip() (in module net-
workapi.infrastructure.ip_subnet_utils), 33

IsLinkLocal() (networkapi.infrastructure.ipaddr.IPv4Network
method), 34

IsLoopback() (networkapi.infrastructure.ipaddr.IPv4Network
method), 34

IsMulticast() (networkapi.infrastructure.ipaddr.IPv4Network
method), 34

IsRFC1918() (networkapi.infrastructure.ipaddr.IPv4Network
method), 34

L
LIST_CONFIG_BGP_DEPLOY_SCRIPT (net-

workapi.admin_permission.AdminPermission
attribute), 50

LIST_CONFIG_BGP_MANAGEMENT (net-
workapi.admin_permission.AdminPermission
attribute), 50

LIST_CONFIG_BGP_UNDEPLOY_SCRIPT (net-
workapi.admin_permission.AdminPermission
attribute), 50

loads() (in module networkapi.infrastructure.xml_utils),
36

local_files() (in module networkapi.settings), 52, 56
Log (class in networkapi.log), 55
LoggingMiddleware (class in net-

workapi.processExceptionMiddleware), 55

M
MultiprocessTimedRotatingFileHandler (class in net-

workapi.log), 55

N
NEIGHBOR_DEPLOY_SCRIPT (net-

workapi.admin_permission.AdminPermission
attribute), 50

NEIGHBOR_MANAGEMENT (net-
workapi.admin_permission.AdminPermission
attribute), 50

258 Index

src Documentation, Release 3.4.2

NEIGHBOR_UNDEPLOY_SCRIPT (net-
workapi.admin_permission.AdminPermission
attribute), 50

netmask() (networkapi.ip.ipcalc.Network method), 41
NetmaskValueError, 35
Network (class in networkapi.ip.ipcalc), 41
network() (networkapi.ip.ipcalc.Network method), 42
NETWORK_FORCE (net-

workapi.admin_permission.AdminPermission
attribute), 50

network_mask_from_cidr_mask() (in module net-
workapi.infrastructure.ip_subnet_utils), 33

NETWORK_TYPE_MANAGEMENT (net-
workapi.admin_permission.AdminPermission
attribute), 50

NetworkActiveError, 53
networkapi (module), 56
networkapi.admin_permission (module), 49
networkapi.ambiente (module), 25
networkapi.ambiente.resource (module), 25
networkapi.ambiente.response (module), 25
networkapi.ambiente.test (module), 25
networkapi.blockrules (module), 26
networkapi.blockrules.resource (module), 26
networkapi.blockrules.test (module), 26
networkapi.check (module), 26
networkapi.check.CheckAction (module), 26
networkapi.config (module), 26
networkapi.cvs (module), 51
networkapi.equipamento (module), 29
networkapi.equipamento.resource (module), 28
networkapi.equipamento.response (module), 28
networkapi.error_message_utils (module), 52
networkapi.eventlog (module), 29
networkapi.eventlog.resource (module), 29
networkapi.exception (module), 52
networkapi.filter (module), 30
networkapi.filter.resource (module), 30
networkapi.filter.test (module), 30
networkapi.filterequiptype (module), 30
networkapi.grupo (module), 32
networkapi.grupo.resource (module), 31
networkapi.grupovirtual (module), 32
networkapi.grupovirtual.resource (module), 32
networkapi.healthcheckexpect (module), 33
networkapi.healthcheckexpect.resource (module), 32
networkapi.healthcheckexpect.test (module), 33
networkapi.infrastructure (module), 37
networkapi.infrastructure.ip_subnet_utils (module), 33
networkapi.infrastructure.ipaddr (module), 33
networkapi.infrastructure.script_utils (module), 36
networkapi.infrastructure.xml_utils (module), 36
networkapi.interface (module), 37
networkapi.interface.resource (module), 37

networkapi.interface.test (module), 37
networkapi.ip (module), 42
networkapi.ip.ipcalc (module), 40
networkapi.ip.resource (module), 39
networkapi.ip.test (module), 40
networkapi.log (module), 54
networkapi.processExceptionMiddleware (module), 55
networkapi.requisicaovips (module), 44
networkapi.requisicaovips.resource (module), 44
networkapi.requisicaovips.test (module), 44
networkapi.roteiro (module), 45
networkapi.roteiro.resource (module), 45
networkapi.roteiro.test (module), 45
networkapi.semaforo (module), 45
networkapi.settings (module), 52, 56
networkapi.sitecustomize (module), 56
networkapi.tipoacesso (module), 46
networkapi.tipoacesso.resource (module), 46
networkapi.tipoacesso.test (module), 46
networkapi.usuario (module), 48
networkapi.usuario.resource (module), 47
networkapi.vlan (module), 49
networkapi.vlan.resource (module), 49
networkapi.vlan.test (module), 49
NetworkAPILogFormatter (class in networkapi.log), 55
NetworkInactiveError, 53

O
OBJ_DELETE_OPERATION (net-

workapi.admin_permission.AdminPermission
attribute), 50

OBJ_READ_OPERATION (net-
workapi.admin_permission.AdminPermission
attribute), 50

OBJ_TYPE_PEER_GROUP (net-
workapi.admin_permission.AdminPermission
attribute), 50

OBJ_TYPE_POOL (net-
workapi.admin_permission.AdminPermission
attribute), 50

OBJ_TYPE_VIP (networkapi.admin_permission.AdminPermission
attribute), 50

OBJ_TYPE_VLAN (net-
workapi.admin_permission.AdminPermission
attribute), 50

OBJ_UPDATE_CONFIG_OPERATION (net-
workapi.admin_permission.AdminPermission
attribute), 50

OBJ_WRITE_OPERATION (net-
workapi.admin_permission.AdminPermission
attribute), 50

OPTION_VIP (networkapi.admin_permission.AdminPermission
attribute), 50

OptionPoolEnvironmentDuplicatedError, 53

Index 259

src Documentation, Release 3.4.2

OptionPoolEnvironmentError, 53
OptionPoolEnvironmentNotFoundError, 53
OptionPoolError, 54
OptionPoolNotFoundError, 54
OptionPoolServiceDownNoneError, 54
OptionVipEnvironmentVipDuplicatedError, 54
OptionVipEnvironmentVipError, 54
OptionVipEnvironmentVipNotFoundError, 54
OptionVipError, 54
OptionVipNotFoundError, 54

P
PEER_GROUP_MANAGEMENT (net-

workapi.admin_permission.AdminPermission
attribute), 50

POOL_ALTER_SCRIPT (net-
workapi.admin_permission.AdminPermission
attribute), 50

POOL_CREATE_SCRIPT (net-
workapi.admin_permission.AdminPermission
attribute), 50

POOL_DELETE_OPERATION (net-
workapi.admin_permission.AdminPermission
attribute), 50

POOL_MANAGEMENT (net-
workapi.admin_permission.AdminPermission
attribute), 50

POOL_READ_OPERATION (net-
workapi.admin_permission.AdminPermission
attribute), 50

POOL_REMOVE_SCRIPT (net-
workapi.admin_permission.AdminPermission
attribute), 50

POOL_UPDATE_CONFIG_OPERATION (net-
workapi.admin_permission.AdminPermission
attribute), 50

POOL_WRITE_OPERATION (net-
workapi.admin_permission.AdminPermission
attribute), 51

process_exception() (net-
workapi.processExceptionMiddleware.LoggingMiddleware
method), 55

R
READ_OPERATION (net-

workapi.admin_permission.AdminPermission
attribute), 51

release_lock() (in module networkapi.log), 55
remove() (networkapi.cvs.Cvs class method), 52
RequestVipsNotBeenCreatedError, 54
rest() (networkapi.log.Log method), 55
ROUTE_MAP_DEPLOY_SCRIPT (net-

workapi.admin_permission.AdminPermission
attribute), 51

ROUTE_MAP_MANAGEMENT (net-
workapi.admin_permission.AdminPermission
attribute), 51

ROUTE_MAP_UNDEPLOY_SCRIPT (net-
workapi.admin_permission.AdminPermission
attribute), 51

S
SCRIPT_MANAGEMENT (net-

workapi.admin_permission.AdminPermission
attribute), 51

ScriptError, 36
size() (networkapi.ip.ipcalc.IP method), 40
size() (networkapi.ip.ipcalc.Network method), 42
subnet() (networkapi.ip.ipcalc.IP method), 40
summarize_address_range() (in module net-

workapi.infrastructure.ipaddr), 35
synchronization() (networkapi.cvs.Cvs class method), 52

T
TELCO_CONFIGURATION (net-

workapi.admin_permission.AdminPermission
attribute), 51

to_ipv4() (networkapi.ip.ipcalc.IP method), 40
to_ipv6() (networkapi.ip.ipcalc.IP method), 41
to_tuple() (networkapi.ip.ipcalc.IP method), 41

U
USER_ADMINISTRATION (net-

workapi.admin_permission.AdminPermission
attribute), 51

V
v4_int_to_packed() (in module net-

workapi.infrastructure.ipaddr), 36
v6_int_to_packed() (in module net-

workapi.infrastructure.ipaddr), 36
version() (networkapi.ip.ipcalc.IP method), 41
VIP_ALTER_SCRIPT (net-

workapi.admin_permission.AdminPermission
attribute), 51

VIP_CREATE_SCRIPT (net-
workapi.admin_permission.AdminPermission
attribute), 51

VIP_DELETE_OPERATION (net-
workapi.admin_permission.AdminPermission
attribute), 51

VIP_READ_OPERATION (net-
workapi.admin_permission.AdminPermission
attribute), 51

VIP_REMOVE_SCRIPT (net-
workapi.admin_permission.AdminPermission
attribute), 51

260 Index

src Documentation, Release 3.4.2

VIP_UPDATE_CONFIG_OPERATION (net-
workapi.admin_permission.AdminPermission
attribute), 51

VIP_VALIDATION (net-
workapi.admin_permission.AdminPermission
attribute), 51

VIP_WRITE_OPERATION (net-
workapi.admin_permission.AdminPermission
attribute), 51

VIPS_REQUEST (networkapi.admin_permission.AdminPermission
attribute), 51

VLAN_ALLOCATION (net-
workapi.admin_permission.AdminPermission
attribute), 51

VLAN_ALTER_SCRIPT (net-
workapi.admin_permission.AdminPermission
attribute), 51

VLAN_CREATE_SCRIPT (net-
workapi.admin_permission.AdminPermission
attribute), 51

VLAN_MANAGEMENT (net-
workapi.admin_permission.AdminPermission
attribute), 51

VM_MANAGEMENT (net-
workapi.admin_permission.AdminPermission
attribute), 51

W
warning() (networkapi.log.Log method), 55
with_netmask (networkapi.infrastructure.ipaddr.IPv6Network

attribute), 35
WRITE_OPERATION (net-

workapi.admin_permission.AdminPermission
attribute), 51

X
XMLError, 36

Index 261

	About Globo NetworkAPI
	Description
	Features
	Architecture
	Related Projects

	Pre-provisioned Server
	Requirements
	Setting up the VM

	Installing Globo NetworkAPI
	Using pre-configured VM
	Installing from scratch
	Create a specific User/Group
	Download Code
	Create a VirtualEnv
	Install Dependencies
	Install Memcached
	MySQL Server Configuration
	HTTP Server Configuration
	Test installation
	LDAP Server Configuration
	Integrate with Queue
	Working with Documentation
	Front End

	Definitions
	Access
	Administrative Permission
	Brand
	Environment
	Equipment
	Equipment Group
	Equipment Type
	Filter
	IP (IPv4/IPv6)
	Interface
	Model
	Network
	Network Type
	Plugin (Roteiro)
	Scripts
	Template (ACL)
	User
	User Group
	Vlan

	FAQ
	Globo NetworkAPI API Docs
	networkapi package

	Using GloboNetworkAPI V3
	Improve GET requests through some extra parameters
	Datacenter module
	Environment module
	Environment Vip module
	Equipment module
	Option Pool module
	Option Vip module
	Server Pool module
	Type Option module
	Vip Request module
	Vlan module
	NetworkIPv4 module
	NetworkIPv6 module
	IPv4 module
	IPv6 module
	Object Group Permissions module
	General Object Group Permissions module
	Object Type module
	Vrf module
	Task module

	Using GloboNetworkAPI V4
	As module
	Equipment module
	IPv4 module
	IPv6 module
	Neighbor module
	Virtual Interface module
	Software Defined Networks

	E-mail lists (Forums)
	Indices and tables
	Python Module Index

